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Abstract

The top quark is the heaviest known matter particle and péaygmportant role in the
Standard Model of particle physics. At hadron collidergsipossible to produce single
top quarks via the weak interaction. This allows a direct sneament of the CKM matrix
elemend;, and serves as a window to new physics.

The first direct measurement of single top quark productigh & tau lepton in the
final state (the tau+jets channel) is presented in thisgh@éie measurement uses 4.8%b
of Tevatron Run Il data irpp collisions at,/s=1.96 TeV acquired by the DO experiment.
After selecting a data sample and building a background imtue data and background
model are in good agreement. A multivariate technique, tealdecision trees, is employed
in discriminating the small single top quark signal from egabackground. The expected
sensitivity of the tau+jets channel in the Standard Modél&standard deviations. Using
a Bayesian statistical approach, an upper limit on the cressaom of single top quark
production in the tau+jets channel is measured as 7.3 pblatcamfidence level, and the
cross section is measured a¢’%9 pb.

The result of the single top quark production in the tau+gignnel is also combined
with those in the electron+jets and muon+jets channels. elpected sensitivity of the
electron, muon and tau combined analysis is 4.7 standarndtaes, to be compared to
4.5 standard deviations in electron and muon alone. Theumsdgross section in the
three combined final states & pp — tb+ X,tgb+ X) = 3.847533 pb. A lower limit on
|Vip| is also measured in the three combined final states to be ldae 0.85 at 95% confi-
dence level. These results are consistent with StandaréMagectations.

Keywords: single top quark; electroweak top quark; tau lepton; tais+¢bannel; cross
section; Tevatron; DO; boosted decision trees
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Chapter 1
Introduction

“What is the universe made of?” is one of the biggest questariag science over the next
guarter-century [1]. Particle physics is the field in whidaneentary matter and its inter-
actions are studied. Since the civilization of humans, fgebave never stopped exploring
our universe, including the Earth on which we live. With chgevelopment of science and
technology in modern times, we have obtained unprecedgmtagtess in understanding
our universe.

All matter has both wave-like and particle-like propertfesve-particle duality). This
is a central concept in quantum mechanics. A de Broglie wagde\ of a particle with
momentump is given by the relatiol = h/p, whereh is Planck’s constant. In order to
reach a smaller probe scale, an incident particle must belexated to a higher energy and
guided to smash on a target (in a target-fixed experimen®lbde with another particle to
achieve a higher Center-of-Mass (CM) energy. The higher teeggnthe richer the species
of the output particles [2]. The Tevatron, at the Fermi NagioAccelerator Laboratory
(Fermilab), is a synchrotron that accelerates protons atigratons pp) up to almost
1 TeV and was the highest energy particle collider in the @orCurrently it is the only
place in the world to produce and directly study top quarks;esthe Tevatron’s energy is
higher than the top quark production threshold. Datasetstoch this thesis is based were
taken from Tevatromp collisions.

Theoretically, the Standard Model of particle physics i®a-abelian gauge theory that

1The Large Hadron Collider (LHC), a proton-proton collidersihned with CM energy of 14 TeV, is in
operation currently at CM energy of 2.36 TeV.
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explains electroweak and strong interactions with setsetddiand the gauge symmetries
SU(3)c x SU(2)L x U (1)y. The Standard Model is very successful since it explain®@sim
all available experimental data in particle physics. Thgdgdimechanism in the Standard
Model is used to understand the origin of mass and plays aideaiole in validating
the Standard Model [3, 4]. The existence of the Higgs bosamtisyet experimentally
confirmed, though it may be discovered by experiments at i@ In the near future.

The top quark is a Standard-Model matter particle and thgiéstaamong all known
elementary particles. Top quark pairs were discovered &yOIhF and DO experiments at
the Tevatron in 1995 and first evidence of electroweak topkgoepduction was published
by DO in 2006. Electroweak top quark production is of intéfes several reasons. One
outstanding reason is that it can be used to med$igie a Cabibbo-Kobayashi-Maskawa
matrix (CKM) element, indicating the strength of electroweak coupbiagyveen a bottom
quark and a top quark. If tfeKM matrix is not unitary, an extra generation of quark flavors
may exist. This thesis is reporting a measurement of eleei top quark production in
the tau+jets channel by boosted decision trees at the DOimeret in 4.8 fb ! of collision
data.

Chapter 2 briefly introduces elementary matter and its iotemas in the Standard
Model. Top quark physics, including the motivation for me@sg electroweak top quark
production, is also included in the chapter. Chapter 3 intced the Tevatron accelerator
chain and the detector system of the DO experiment. Data d&hddvhples including trigger
simulations are described in Chapter 4 and object ideniidicat(ID) and event selections
in Chapter 5. The technique of boosted decision trees (BDT¥ésl in both the tau 1D
optimization and electroweak top signal discrimination. B&re discussed in Chapter 6.
The default DO tau ID algorithm, which is based on neural oek& andZ — 11 samples,
is not optimal for this search. So, a tau ID optimization isfmened and is described in
Chapter 7. The background model will be presented in det&ilhapter 8. In Chapter 9,
a Bayesian statistical approach is applied to study expetahsensitivity and calculate
cross sections considering various systematic uncedainthe chapter also presents cross
section combination results between the tau+jets chamue¢ctron/muon+jets channels
and a measurement php|. Chapter 10 is a summary of the analysis.



Chapter 2
Standard Model and Top Physics

The Standard Model of particle physics is a successful dimal framework which de-
scribes elementary particles and their fundamental ioteras. Section 2.1 gives a brief
introduction to elementary matter particles and theirrext@ons in the Standard Model. In
Section 2.2, top quark physics, including top quark paidpation and single top quark
production, is briefly introduced and motivation for the m@@ment presented in this the-
sis is provided.

2.1 The Standard Model

2.1.1 Elementary Particles

All elementary particles in the Standard Model can be d@skias leptons, quarks and
elementary bosons. Leptons and quarks are fermions witix${## and are the matter par-
ticles which build our universe. Leptons and quarks are eagéinized in three generations
or families. Gauge bosons are force carriers and are regpomsr interactions between

particles. Table 2.1 summarizes some important propestilsptons and quarks.

2.1.2 Elementary Interactions

There are four known and fundamental interactions in natlestromagnetic (EM), weak,
strong and gravitational. The first three are described gystandard Model.
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Table 2.1: Fundamental fermions in the Standard Model [5]

Generation | Generation |l Generation 1l
Flavor Up (u) Down (d) | Charm (c) Strange Top (1) Bottom
Quarks (s) (b)
Charge +2e e +2e Le +2e 1e
Mass (MeV) | 1.5t0 3.3 3.5t06.0 | ~1270 ~104 ~171200 ~4200
Flavor Electron (e) Electron | Muon ()  Muon Tau (1) Tau neu-
Leptons neutrino neutrino trino ()
(Ve) (Vu)
Charge -e 0 -e 0 -e 0
Mass (MeV) | 0.511 < 105.7 < 1777 <155
22x10°° 1.7x107%

EM Interaction The classical theory of the EM interaction was formulatedviaxwell
over one hundred years ago. Quantum ElectroDynamics (Q&R)guantum field
theory of electromagnetism and the is the most successall dynamical theories.
Any interaction which is mediated by a photon is an EM intaoac

Weak Interaction The weak interaction was first parameterized by Fermi in 8&0% in
his theory explaining decay in which the weak transition rate is proportional ® th
strength of the coupling between four contact fermions. fédidamental particles,
leptons and quarks, join in the weak interaction. The wealoflgroup in which
quark and lepton doublets are basic representations istedte beSU(2). The
weak force carriers are the charged bosafisand neutraZ® boson. The weak and
EM interactions are unified by 8U(2) x U (1) gauge theory in the Standard Model.
The theory predicts the existence of four force carriers exulains why three of
them are massive and one among them is massless via the Hagignism [3, 6].
The Higgs mechanism implies the existence of a Higgs bosmmever, it does not
predict the mass of the new patrticle.

Strong Interaction The theory describing dynamics of the strong interactiocaked
Quantum Chromodynamics (QCD). In QCD, color plays a similae itol charge
in QED. The strong interaction is mediated by massless gleonpled to the color
charge of quarks. In QCD, the interaction terms of the colorgatks with the vector
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fields in a Lagrangian requires the existence of vector géalgks. The strong gauge
group isSU(3) where 3 is for three colors. Thus there are 8 generators amklg
kinds of gluons.

Gravitational Interaction Since the gravitational interaction is very weak, it is oftg-
nored in the context of other three forces. It is not part @& $tandard Model of
particle physics and will not be discussed here.

Table 2.2 is a summary table comparing information from the fundamental interactions
in nature.

Table 2.2: Summary table comparing properties of the foomkmfundamental interactions
in nature. Relative strengths are estimated at distarce® 18 cm [7].

Interaction Electromagnetic Electroweak Strong Grawitsdl
Relative Strength 10 10 1 1073
Mediator Photon W andz Gluon Graviton
Gauge Symmetry u(1) Broken SURY(1) SU(3) -
Range Infinite ~10¥m ~10m Infinite

2.2 Top Quark

2.2.1 Discovery

In the Standard Model, all left-handed quarks exist in wesalspin doublets. For exam-
ple, the up quarki_ isospin partner is the down quadk. When the bottom quark was
discovered at Fermilab in the 1970s, it was predicted thatetishould exist a new left-
handed isospin partner. After almost two decades of seaycthe top quark was directly
discovered by the DO and CDF experiments/isa= 1.8 GeV pp collisions at the Fermilab
Tevatron Collider [8]. This discovery was based on top quaik groduction via the strong
interaction. Reviews of recent measurements of top quanigsties and interactions at the
Tevatron can be found in Refs. [9-11].

More than a decade later, the first evidence of the produdidop quarks via the
weak interaction was published [12] by DO and observatios published by DO [13] and
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CDF [14] independently. The analysis in this thesis is the §esrch for electroweak top
quark production using tau leptons.

2.2.2 Top Quark Mass

The top quark’s mass is comparable tothat of a gold atom argdtiite heaviest known
elementary patrticle. It is also the only fermion with the sgseater than the mass of the
weak force carriers, th&/ andZ bosons, and it may play a special role in the mechanism of
electroweak symmetry breaking. The top quark mass an@/theass are two of the most
important parameters constraining the Higgs mass in thed&td Model. The most precise
top quark mass is measured in top quark pair samples. Thent@wombined top quark mass

is evaluated by the Particle Data Group from Tevatron dégad&1.3:t1.1+1.2 GeV [5].

2.2.3 Top Quark Pair Production

g t P "
q t 9 t ?/ ,§<
q t u% t g \\ t g t
(b) (c) (d)

@

Figure 2.1: Leading order Feynman diagrams of pair prodoaif top quarks via the strong
interaction in hadron collisions through quark-antiquanihilation (a) and gluon fusion
(b), (c) and (d).

In pp collisions, top quark pairstt) are produced in the strong interactions mainly
through quark-antiquark annihilation and gluon fusion lasv in Fig. 2.1. Top pair
production has been measured in various channels at thedORR experiments [5].
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2.2.4 Top Quark Decays

In the Standard Model, the top quark decays t@/@oson and a quark only by flavor
changing weak interactions as shown in Fig. 2.2. It is ptedithatB(t — bW) > 0.998
and other decay modes are rare and difficult to extract. Thejt@mrk has a very short
lifetime of approximately 4 10-2° s, although its decay is due to the weak interaction. It
decays so quickly that it does not have time to form boune@stand depolarise spin states.
Unlike light quarks, the lifetime of the top quark is oftersasiated with its intrinsic width.
TheW boson then decays to leptons with a branching fraction of idi%ach lepton type
and to quarks with a branching fraction of 67%. The searclfopaed in this analysis

is done in the decay — bW — b tv;. The detector signature is an isolatedmissing
transverse energl/f) from neutrinos, and at least obeagged jet.

l, q

Figure 2.2: Feynman diagram for top quark decay.

2.3 Electroweak Top Quark Production

2.3.1 Single Top Quark Production and Searches

Top quarks can not only be produced in pairs by the strongaaten, but also singly by the
electroweak interaction. At the Tevatron, electroweakdoprk production is often called
single top quark production. Single top quark producticacsompanied by a bottom quark
in the s-channel mode or by both a bottom quark and a light quark iri-tfeannel mode
as illustrated in Fig. 2.3. Thechannel involves production of an off-shell and time-like
boson which decays into a top and a bottom quark.t¥¢teannel is &/-gluon fusion mode
involving the exchange of a space-lWé-boson between a light quark and a bottom quark
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resulting in a single top quark and a jet. Besidesstendt-channels, there are associated
tW processes at hadron colliders \ig — tW to generate single top quarks. However,
because the processes have a small cross section at theometlagy are often ignored. In
this thesis, the goal is to search for theandt-channels at once while neglecting tw
process.

b w
b
g t
q' q
> b w
q t
/ i
w+ t
N B t
g b 9 b g t

(@) (b) (c)

Figure 2.3: Feynman diagrams for single top quark prodaociio(a) s-channel, (b)t-
channel, and (c)W processes. (a) and (b) are the single top quark productiatesnof
interest at the Tevatron.

Cross sections of the andt-channels have been theoretically studied and predicted
in many references suchas [15-18]. The theoretical crag®se 112+ 0.04 pb for the
s-channel and 34+ 0.12 pb for thet-channel are used in this analysis as calculated in-
Ref. [18].

Considering the Standard-Model decay modes of the top quar®/sboson, single top
production results in four channels: electron plus jetspmplus jets, tau lepton plus jets,
and all jets channels. Evidence [12,19,20] and observii®i4] of single top production
with an electron or a muon in the final state (electron+jetsioon+jets channels) and the
first direct measurement o¥,| [12] have been published recently. The study in Ref. [14]
also includes the result in tB& plus jets channel. However, this is the world’s first direct
search for single top quarks using tau leptons.
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2.3.2 Motivation

There are several motivations for the measurement of sieglegquarks in the tau+tjets
channel. These are detailed below.

CKM Matrix and Single Top Quark Production

It is observed that the change of flavors of quarks or lepteradlowed only in the weak
interaction. This occurs because there is a mismatch batgeantum states of quarks
in the weak interaction and in the strong interaction. Aamyitmatrix called the Cabibbo-
Kobayashi-Maskawa (CKM) quark mixing matrix was introdutedharacterize the strength
of the couplings in the weak decays of quarks and specify senatch. This relationship
can be formulated as follows:

d’ Vud Vus Vub d
S| ={Ved Ves Veb| |S (2.1)
b’ Mid Vs V] |b

where[d’,s, ] and[d,s,b]T are the eigenstates of quarkss andb which participate in

the weak and strong interactions respectively. Magnitwdes®me CKM matrix elements
such asv,q have been well determined experimentally. The current aredsvalues are
listed in the following matrix. [5]

0.97418+0.00027 02255+0.0019 (3.93+0.36) x 1073

0.230+0.011 104+0.06 (41.2+1.1) x 103 (2.2)
(8.1+06)x10° (387+23)x 1073 0.777318
TheWtbvertex through which the single top quark is produced cbutes by the vertex
factor )
19w
———Vip(1— 2.3

to the matrix element for the production, wheggis the coupling strength of the weak in-
teraction. Since the cross section for a given process @optional to the square of matrix
element according to Fermi’s “Golden Rule”, thus the crossiee of single top produc-
tion is proportional tdVip|%. By measuring the cross sectidvy,| can be extracted with no
assumption on the number of flavor generations in the Stdridadel. Direct extraction of
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|Vip| is one of the primary motivations for measurements of sitmpeproduction presented
in this thesis.

With other well-measured CKM matrix elemerigy,| and|Vep|, the direct measurement
of |Vip| can also be used to prove the unitarity of the matrix by chreckvhether or not
IVub|? + |Veb|? + [Mip|? is equal to 1 and indicate if any extra quark generation gxisyond
the Standard Model.

Sensitivity to New Physics Beyond the Standard Model

Single top quark production can be affected by new physicaitih either unconventional
weak interactions, or new particles or new mechanisms. kample, anomalougVtb
couplings would modify the rate of single top production @ne angular correlations of
top quark decay products. Recently the DO experiment cordbim@rmation fromw
boson helicity of top quark decay daughters and anomalowgliog searches in the single
top final state [21] to present limits on the anomalddi couplings [22]. Different modes
of single top quark productiors{ or t-channel production) are sensitive to different new
physics beyond the Standard Model. A new heavy vector bd%6n could contribute
additional processes that would affect the rates and kitiesnaf thes-channel production
mode [23]. Recently, DO published the first analysis to isokat individual single top
guark production channel and measured a cross sectiod@igg pb for thet-channel
and 105+ 0.81 pb for thes-channel (see Fig. 2.4 for a 2D plot of thehannel cross section
vs. thes-channel cross section) [24]. Another interesting aspethepossibility of non-
Standard-Model top quark couplings [25]. The flavor chaggieutral current terms, for
example, via &Zc, ortcgortug[26] vertex can exhibit large effects on single teghannel
production [25].

Enhancement of Signal Acceptance

The tau lepton is a powerful tool often used to study physicand beyond the Standard
Model [27]. A tau lepton has more than 30 decay modes due bheésy mass of 1.78 GeV.

A pie chart in Fig. 2.5 shows tau lepton decay modes and tinairdhing ratios. As shown

in the chart, the leptonic channels of the tau decay havetab&ubranching fraction while

the hadronic tau decays have about 65% branching fractjon [5



CHAPTER 2. STANDARD MODEL AND TOP PHYSICS 11

DG 2.3 fb"
Measured Peak
SM
Ztu FCNC
gzm=°'04 gz

|V |=0.2
ts

> X 4 * @

Top-flavor
m,=1TeV
Top Pion
W m=250Gev

[ Jes%c.L.
B o0 c.L.
B 95% c.L.

t-channel cross section [pb]

—h
IIII|IIII

t-channel discriminant
IIII|IIII|IIIIIIIIIlIIIIlIII

1 2 3 4 5
s-channel cross section [pb]

2

Figure 2.4: 2D cross section plot bthannel vs.s-channel single top quark production.
Contours are of equal posterior probability density. Thenfsoare the measured peak,
the Standard Model expectation and several representagiwephysics models: flavor-
changing neutral currents withZaboson coupling to the top and up quark with a strength
of 4% of the SM coupling, a four-quark-generation scenarith KM matrix element
IVts| = 0.2, a top-flavor model with new heavy bosons at a scale mx = 1 de¥,a top-
color model with &b bound state (Top Pion) with a massmf = 250 GeV. (after Fig. 5 of
Ref. [24] and references herein.)
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Figure 2.5: Pie chart af decay modes (Data from Ref. [5])
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Although single top production has been observed in thereleand muon channels,
the result is still statistically limited. Considering slagop quarks in the tau lepton channel
will increase signal acceptance. In this analysis, thedradally decaying tau lepton will
be identified. Adding the hadronic tau channel can incremggestop quark acceptance as
much as 30%, hence allowing more precise measurement ahtjle sop cross section and
3

Independent Single Top Quark Channel

The electron and muon channelshave many similarities. fiticpéar, they suffer from the
same dominant background#/€jets) and hence have very similar background models.
This analysis has a completely different dominant backgaddi@CD-multijets) and differ-
ent sources of systematics. The tau+jets channel is thuscatient independent check of
the measurements in the other channels.

Higgs Search

As the heaviest lepton, the tau is related to many intergsignatures such as Higgs decays
to taus. The best strategy to use in a Higgs search is veryndepeon the unknown Higgs
mass [28]. Fig. 2.6 shows branching ratios of the Higgs asetion of Higgs mass for the
different decay channels predicted by the Standard Modwed.tau lepton pait™ 1~ is one

of the most important decay modes for a low mass Higgs boshis I[dw mass region is
favoured by the current electroweak data and is the focudaifa effort at the Tevatron.
Single top quarks in the tautjets channel are an importaskdraund to this search.
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Chapter 3
Experimental Apparatus

Experimental data used in this analysis were generateddtgmpanti-proton fp) collisions

at a centre-of-mass (CM) energy ¢6=1.96 TeV and acquired by the DO detector system.
This chapter has two main sections: Section 3.1 introduweJ¢vatron accelerator chain
by which proton and anti-proton beams are boosted to higtggrséep by step; Section 3.3
presents the DO detector.

3.1 Fermilab Accelerator Chain

The Tevatron [29-32] at Fermilab was the highest energyigbartollider in the world.
Fermilab is located in Batavia near Chicago, IL, USA. Fig. 3. hm aerialphotograph of
Fermilab. The Tevatron has two experiments: DO and CollideteBtor Facility (CDF),
both of which announced the discovery of top quarks in 199Be Tevatron collides a
beam of protons with a beam of anti-protons, and there aratigelerators with different
purposes in the Fermilab accelerator chain: Cockcroft-Mghre-accelerator, LINear AC-
celerator (LINAC), booster, main injector and main ring. éfithem except the Cockcroft-
Walton are shown in Fig. 3.2. Below is a brief introduction hese components of the
Tevatron acceleration chain.

14
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Figure 3.1: Aerial view of Tevatron at Fermi National Acaal®r Laboratory located to
the west of Chicago, I, USA [33]

3.1.1 Acceleration of Protons

The proton source is ionized hydrogen gas Jivhich is pre-accelerated to an energy of
750 keV by a Cockcroft-Walton pre-accelerator [34]. The tieghy charged hydrogen ion
beam from the Cockcroft-Walton pre-accelerator is led tolftNAC [34]. The LINAC is
130-meters long and is composed of metallic drift tubesigol by vacuum gaps. It uses a
Radio Frequency (RF) technique to accelerate the hydrogertacem energy of 400 MeV.
Following the LINAC, the booster provides a boost to an enafgy GeV. It consists of a
series of magnets arranged around a circle with a 75 meterrsrg#t]. 400 MeV negative
hydrogen ions from the LINAC are guided to the booster ancthigir electrons stripped
off by a thin Carbon foil, which leaves only the protons, theadcelerates the protons to
8 GeV.

Upon leaving the booster, the proton beam enters the maentor by a transport en-
closure line and is ready to circulate for further acceleraby the main injector [35, 36].
The main injector is also a synchrotron that was built in aafi@n upgrade (Run II). It can
provide two energies of beams: 120 GeV and 150 GeV. Duringlfizeget operations, the
main injector accelerates protons to the desired energ2@GeV followed by extraction
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Figure 3.2: Schematic illustration of the Tevatron acegt@rchain
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to a fixed-target. The 120 GeV protons are used either forpgnoton generation, which
will be introduced later, or a separate neutrino experingcatied Neutrinos at the Main In-
jector (NuMI). The main injector also provides injectionId0 GeV protons into the next
accelerator: the Tevatron main ring.

The Tevatron main ring is the last and largest acceleratineichain where protons and
anti-protons are accelerated from 150 GeV to 980 GeV eaclasncollided at two exper-
iments: CDF and DO [37]. It was the world’s first supercondugtsynchrotron, starting
its first operation in 1983. The Tevatron consists of abo@01€uperconducting magnets
running at 4.3 K providing a magnetic field strength of 4.2 Tesla. These retégghend
proton and anti-proton circulating beams traveling in tinele with a~2 km diameter.

3.1.2 Generation of Anti-protons

Generation of anti-protons is realized by smashing the 1@ @oton beam from the main
injector onto a Nickel target [38]. Anti-protons from reiacis between protons and target
material have a very large energy spread, so it will be difficu downstream accelerators
to accept. A debuncher after the target station is emplaysditch the wide energy spread
and the narrow time spread at the RF cavity. Then anti-praomsent to an accumulator
and a feedback stochastic cooling system so that they caolleeted successively and
stored for further acceleration. Like protons, anti-pnstavith energy of 8 GeV will be
accelerated to 150 GeV in the main injector and to 980 GeVaeril#gvatron main ring.

3.1.3 Tevatron Operation

Data have been collected in two run periods: Run | (1992-1888)Run Il (2001-present).
During Run |, the Tevatron collided proton and antiprotonrbeat a center-of-mass energy
of v/s=1.8 TeV. Protons and anti-protons each had 6 bunches perandghe interval
between bunch crossings was 3500 ns. During the Run | pehiedypical peak luminosity
was 1-%10%! cm?s! and the DO experiment recorded approximately 120'if data.
After Run I, the Tevatron was shut down for upgrading. Run ktethin March, 2001. After
upgrading, including building the new main injector, the CiMergy increased to 1.96 TeV,
the number of bunches per ring per speciesincreased to @éharnterval between bunch
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crossings is shortened to 396 ns [39]. Fig. 3.3 shows the Rumtdgjrated luminosity
delivered to and recorded by DO as a function of time.

w Run Il Integrated Luminosity 19 April 2002 - 31 May 2009
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Figure 3.3: Run Il integrated luminosity recorded by the Dfes¥ment.

3.2 High Transverse Momentum Physics

Due to the high CM energy of the incidgmandp, the outgoing particles span a large range
of final states and possible kinematic features. Inelgsdicollisions, in which one or more
particles are scattered at low angles with respect to thenpdaminate the totabp cross
section. However, the most interesting physics processg@slace in hard scattering by
which partons irp (p) are scattered such that large energy is transferred betivem [28].
Cross sections of the processes patrtially rely on the Paresiy Function (PDF), the
probability density to observe a parton of a certain monmmarftaction within a hadrong
or p).

Figure 3.4 illustrates two of the most common cases in haattesing: (a) shows hard
scattering that produces outgoing partons with high trarsermomentump(), particles
from initial and final state radiation, and underlying paes from the remnants gf(p); (b)
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Outgoing Parton Outgoing Parton

(@) (b)
Figure 3.4: Two QCD processes in hard scattering dupgpgeollisions. (a) a hard par-

ton scattering with high transverse momentpim(b) a multiple parton interaction (after
Ref. [40])

shows a similar process in which there are multiple partteractions. Events belonging
to these two cases are referred as QCD-multijet events siiecémp cases involve the
strong interaction and several jets are present at thetdetegel The QCD-multijet events
are the main background in studies of electroweak phenoméfith even higher energy
transfer, some heavier particles IMeébosons and top quarks are created. The topic of this
thesis is the measurement of electroweak top quark praguati high pr collisions, and

its dominant background is from QCD-multijet events.

3.3 The DO Detectors

3.3.1 Overview

The detection of particles is made possible by their intevas with matter. The working
principle is similar to an eye seeing images. We can see thédvaoound us because
light enters our eyes and interacts with the retina to predhe signals that our brain then
analyzes. Shortly after collisions, there are many pasigenerated. Experimentalists need
to employ a “retina”, i.e., a detector system, to collecomiation about emitted particles
and thus study physics processes of interest. Such infamiatludes momentum, energy
and trajectory.

1A collision which has been recorded without any selectidgieda applied (i.e. no high transverse energy
requirement [9]) is referred to as a minimum bias event. &lreal data events are superimposed on MC
events in order to simulate multiple interactions and pileu
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Figure 3.5: lllustration of detecting different particiges after collisions.

Different interactions between incident particles andteratequire different types of
detectors. Fig. 3.5 illustrates how a typical detectoreystworks for different particles.
From innermost to outermost layers, there is a trackingesysan electromagnetic (EM)
calorimeter, a hadron calorimeter and a muon system. Sonte ohost common particles
are photons, electrons/positrons, muons, pions, prototsi@utrons and are shown in the
figure. Photons do not carry electric charge hence theiedtajy can not be bent by the
magnetic field, however, they do deposit energy in the EMraaleter. Electrons/positrons
(e¥) have charges and their momentum can be measured by thingraylstem without
too much energy lost before they deposit their energy in tecBlorimeter. High energy
EM showers are developed via bremsstrahlung and electsitvpn pair production. A
muon (1) has a low interaction rate with matter and at Tevatron easng expected to
behave as a minimum ionizing particle. So, if a fast chargadigde passes through a
large number of absorbers in the calorimeter with minor gnérsses and small angular
displacement, then such a particle is usually identified asuan. Energetic secondary
hadrons like protons, neutrons and pions form hadronic sh®and eventually lose energy
mainly by ionization. However, not all the incident energyedto nuclear interactions,
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particle recoil and production of neutrinetc. is recorded [7,41,42].

Responding to the improvements in the Tevatron mentioneddti® 3.1.3, the DO de-
tector system was also significantly upgraded to enhandetéxtion ability for the physics
reach of the experiment. Fig. 3.6 shows a diagram of the adiegr®0 detector system. The
DO detector system consists of 3 major subsystems: theateracking system, the EM
and hadron calorimeters and the muon spectrometer. S&8a describes the tracking
system. Section 3.3.4 introduces the EM and hadronic caéters. The muon spectrome-
ter is presented in Section 3.3.5. Introduction to the lwsity detector is in Section 3.3.6.
Section 3.3.7 shows DO’s trigger system and data acquisstystem. The original DO de-
tector before upgrading is presented by Ref. [43] and thectmtafter upgrading can be
referred to Ref. [39].
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Figure 3.6: Schematic diagram of the upgraded DO deteatarad inside the Tevatron ring
(after Ref. [39]).
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3.3.2 Coordinate System of DO Detector

A right-handed coordinate system as shown in Fig. 3.7 wilubed in the detector de-
scription and data analysis: the proton beam is alongztes direction and thg-axis

is upward in the detector; the anglesand 06 are the azimuthal and polar angles respec-
tively. The pseudorapidity is defined gs= — In[tan8/2], which approximates the rapidity,
y=1/2In[(E + p,c)/(E — pC)], as(m&/E) — 0.

y
A

> Z

_q
Proton Anti-Proton

Figure 3.7: Coordinate system of the DO detector

3.3.3 Central Tracking System

The DO central tracking system is used to detect the pas$abamed particles, to measure
their momenta and to locate primary and secondary vertitesnsists of the Silicon Mi-
crostrip Tracker and the Central Fiber Tracker both of whighlacated inside a solenoidal
magnet with a field of 2 T [39].

Silicon Microstrip Tracker (SMT)

The DO SMT is designed to provide high resolution positiorasugements of charged
particles for both tracking and vertexing over almost tHerjucoverage of the calorimeter
and muon spectrometer [39]. Itis located immediately olgttihhe Tevatron beryllium beam
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Figure 3.8: Schematic diagram of the DO central trackingesyg439].

pipe. As a charged particle traverses the silicon layeesten-hole pairs are generated
along its track and drift in anelectric field towards actieasors.

The length scale of the SMT is comparable with the scale ofirteraction region
(~25 cm). In order to meet the requirements that tracks arergiyneerpendicular to the
detector surface for alf, the SMT uses a design of barrel modules interspersed wath di
modules in the center region and in the forward regions. A Bof the SMT is shown
in Fig. 3.9.

Central Fiber Tracker (CFT)

The CFT, located outside the SMT, occupies a radial space 2@ro 52 cm from the
center of the beam pipe [39]. Scintillating fibers are modraa eight concentric cylin-
ders. The two innermost cylinders are 1.66 meters long ierai@ provide room for the
forward SMT disks while the six outer ones are 2.52 meterg.|Miith this geometry, the

n coverage is<1.7. Two sets of fibers are supported by each cylinder, onis seiented
along the beam direction, another is rotatédngth respect to the beam line. The base
cores of the scintillating fibers are made of polystyreneediopith the organic fluorescent
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Figure 3.9: Isometric view of silicon microstrip tracke®[3

dye paraterphenyl. The small fiber diameter, 8% provides a resolution of about 100
pum. The scintillation light from the fibers is led via clear filveaveguides to Visible Light
Photon Counters (VLPCs) for read out.

3.3.4 Calorimetry

The DO calorimeter system consists of three sampling caktgrs: one central calorimeter
and two end calorimeters, and an intercryostat detectdr 39. 3.10 shows a schematic
3D view of the system. The Central Calorimeter (CC) coveis< 1 while two End
Calorimeters (EC): South EC and North EC extend coveggep to 4.0. The region be-
tween CC and EC is filled by an intercryostat detector covettiegoseudorapidity region
0.8 < |n| < 1.4. The calorimeters each work within their own cryostat vimperature at
~90 K. The calorimeters’ active medium is liquid argon. Theaber plates in the EM
sections are made from uranium while those in the fine hadmegttions are made from
uranium-niobium alloy and those in the coarse hadronid@estire copper or steel.

A typical readout cell unit of the calorimeters is shown ig.R3.11. The metal absorber
plates are grounded and the signal boards with resistifacas are connected to positive
high voltage (2.0 KV). With this structure, the electric fiddetween an absorber plate and
a signal board causes electrons to drift in the liquid argam gSeveral such pads having
the samea) and@ are ganged together in depth and compose a typical readbuhite

Fig. 3.12, a cross section view of one quarter of the DO aaletérs, shows a transverse
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Figure 3.12: Cross section view of one portion of the DO caleters [39].

and longitudinal segmentation pattern. Groups of the ¢t are organized together for
signal readout are indicated by the shading pattern. THe wathin one pattern form
pseudo-projective towers because the centers of the celtsxahe rays projecting from the
center of the interaction region. Subsequent object rénaostgon benefits from this feature.
Sizes of regular towers in both EM and hadronic sectioné\gre- 0.1 andA@ = %—Qf =0.1.
The EM modules in the CC and ECs are arrayed in four separatb temrs. The
layers in the CC are 1.4, 2.0, 6.0 and 9.8 radiation lengthsthick and ones in the ECs
are 1.6, 2.0, 6.8 and 9§ thick. An EM shower reaches maximum at the location around
the 3rd layer of the EM section, so in this layer EM modulesspi# twice as finely in both
n and@in order to conduct more precise measurement of EM showéns fiie hadronic
modules in the CC are organized in three groups in radius Witkmesses of 1.3, 1.0 and
0.76 absorption lengtha f) while thickness of the single coarse section is abouig.2



CHAPTER 3. EXPERIMENTAL APPARATUS 27

3.3.5 Muon Spectrometer

The DO muon spectrometer system [39] is the outermost layreoDO detector system.
It is visible in Fig. 3.6, and it consists of Proportional DiTubes (PDTSs) in the central
region, Mini Drift Tubes (MDTS) in the forward regions, tadal magnets and scintillation
counters.

The central muon system covers the pseudo-rapidity ramge 1.0 using the PDTs
while the forward one extends the muon detectiomto~ 2.0 using the MDTs. One layer
(A-layer) among the three layers of the central PDTs is kedatside the central magnet
while another two are outside the central magnet. Posigealution of the drift chambers
is ~1 mm.

The muon trigger scintillation counters in the muon systemtigbute to background
rejection by providing triggering. More information canfoeind in Ref. [39, 44].

3.3.6 Luminosity Monitor

The DO Luminosity Monitor (LM) system is used to (I) monitdret Tevatron luminosity
near the DO interaction area by detecting inelagficollisions, (Il) estimate beam halo and
(111) measure the coordinate of the interaction vertex [39]. As shown in (afaj. 3.13,
two sets of twenty-four plastic scintillation detectore amounted az = +140 cm with
PhotoMultiplier Tube (PMT) readouts whose geometry andtion are shown in (b) of
Fig. 3.13. The detectors have a pseudorapidity coverage: 2n| < 4.4 and occupy the
area outside the beam pipe.

The luminosityL is calculated by

. f ~N|_|\/|
OoLm

L

(3.1)

where f is the beam bunch crossing frequenbly,, is the average number of inelastic
collisions per beam crossing collected by the LM, ang is the effective cross section of
pp which takes into account the acceptance and efficiency dflvhe

The particles from the beam halo are backgrounds when megsawerage numbers of
ppinteractions. Atechnique using precise time-of-flight m@ament is used to distinguish
the particles inpp interactions from those of the beam halo. A particle hitstthe LM
detectors located at140 cm at the times, andt_. The difference in the coordinates of
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the interaction vertex, by time-of-flight isz, = §(t_ —t, ). If we apply a cutz| < 100
cm, then nearly alpp collisions are encompassed.

Proton Direction

LM n=27
Endcap Silicon Tracker __---{"
Calorimeter \\ - n=4.4
}' 7)) — { Beam Pipe
-140 cm 140 cm

() (b)

Figure 3.13: Schematic view of (a) the location of the DO LMed¢ors; (b) the geometry
of the LM and the locations of the PMTs (red solid circles)][39

3.3.7 Trigger and Data Acquisition Systems

The DO Run Il trigger system was upgraded to meet the requitenieom the increased

Tevatron luminosity and reduced bunch crossing intervalmpared to Run I. The DO

Run 1l trigger system is a complex trigger system with threstinict levels. As shown

in Fig. 3.14, the detector data readout is closely intedrati¢h the trigger system. Level

1 and Level 2 triggers conduct hardware processing whileeL&wemploys sophisticated
algorithms to reduce the event rate to 50 Hz. Afterwardsdidi@ are stored on tape by
online hosts.

L1 reduces an input rate of 1.7 MHz to a L2-accepted rate ofieb&Hz. The trigger
framework collects information from each L1 trigger andides whether or not a specific
event is to be accepted for the next level. The L2 triggeresyss capable of input rates
of up to 10 kHz and maximum output rates of 1 kHz. L2 is impletedrwith different
preprocessors specific for different detectors and a glptzadessor for integration of the
data. Like L1, its subsystems include tracking, calorimgiseshower and muon systems.
The final L2 decision is made in the L2Global stage based osipfipbjects reconstructed
in the preprocessors.

In order to enrich the physics samples and further reducateates to a level for
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Figure 3.14: Data flowchart of the DO trigger system and dedaigition system [39].

which the data can be stored to tape, the L3 trigger, as a bugh &nd fully programmable
software trigger, is used to do additional rejection wittiuetion of event rates from 1 kHz
to 50 Hz [39]. Physics objects including electrons, muoasst jets, vertices and missing
Er are reconstructed by sophisticated algorithms at thid,lared the L3 decisions are
based on these objects or their relationships such asamianass, and spatial difference.

The data acquisition system (L3DAQ) is in charge of datasppartation from the VME
readout crates of the L2 system to the processing nodes af3tfirm [39]. Commodity
single-board computers coordinate to all nodes in the Byste



Chapter 4
Datasets and Monte Carlo Samples

In this chapter, Section 4.1 introduces experimental étdassed in the study, including
integrated luminosity. Section 4.2 presents triggers tigeskim data and efficiency turn-
on curves for simulated samples. Section 4.3 explains M@aiito samples used in the
background model.

4.1 Data Samples

The data sample was collected between August 2002 and A@49.2n 2005, the Tevatron
underwent a luminosity upgrade by a factor of 3. At the same tthe DO experiment com-
pleted significant detector and trigger upgrades [45]. Kangle, the SMT suffered from
radiation damage and a new radiation-hard inner silicoerl@ystalled on the beam pipe
at R=1.6 cm [46]. The trigger system also was improved at L&velthe calorimeter and
tracker, and at Level 2 in the silicon trigger and softwaigger [47]. With the upgrades,
the DO detector performs better, meeting the more strirggrirements of higher peak and
integrated luminosity. For example, this leads to an inseaab tagging efficiency. So,
it is reasonable to split data into Run lla (until the 2005 @oigy) and Run llb (since the
2005 upgrade) periods. The Run lla and Run Ilb raw datasetseaomstructed with dif-
ferent DO software production releases. The DO common sagmolup skims the whole
dataset and provides analyzers with some skimmed subedatefnitions. A skim called
the “new phenomena” (NP) skim is used in the analysis maielyalbise the definition of
this skim includes interesting triggers to be introduceldwelntegrated luminosity values

30
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corresponding to different trigger versions are shown ibldd.1. The total integrated lu-
minosity of good quality data is 4.8 Tt of which Run lla provides- 1.0 fo—! and Run Ilb
~3.8fb1.

Table 4.1: Integrated luminosity values correspondingifferént trigger versions used
in this analysis.Shutdownin the table means the shutdown period during which the DO
detector system underwent maintenance and upgrades in 2007

Integrated Luminosity [pb']

Channel Triggers Version Luminosity
V11.0 - V12.0 63.1
V12.0 - V13.0 227.4
Run lla
V13.0 -V14.0 378.6
V14.0 - V15.0 334.5
V15.0-V15.2 208.7
Run Ilb (Pre-shutdown)
V15.2 - V16.2 1,006.1
Run b (Post-shutdown) V15.2 -V16.2 2,553.7
Total Run Il Integrated Luminosity 4,772.1

4.2 Triggers and Simulation

As of the date when the analysis was finished, there is nofsp&ayger designed for the
tau+jets single top signal. Given this fact and the eventltgy that is being looked for
(one narrow tau jet and two or more other jets), similar iggto the ones used in the
Higgs boson search in thlH — t,,vbb channel [48] are interesting and have been used.

4.2.1 Run lla Triggers and Parameterization

The triggers used to skim Run lla events are defined as:
Calorimeter jet trigger (MHT30_3CJT5)

— L1: there must be three calorimeter trigger towers \Eth>5 GeV
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— L2: missing transverse energy for jets is greater than 20 Ge

— L3: vectorial sum of all jet&r is larger than 30 GeV

Acoplanarity trigger (JT1_ACO_MHT_HT)

— L1: three calorimeter trigger towers wily >5 GeV

— L2: missing transverse energy for L2 jets is greater thaG @4,
Ag(jetl, jet2) <168.75. Jetl and jet2 are the two most energetic jets.

— L3: at least one jet witlpt>9 GeV. Vectorial sum of all jetspt must be
above 30 GeV and scalar sum of all jes, with pr>9 GeV is above 50 GeV.
Ag(jetl jet2) <170°

MC samples do not have trigger level objects, so there is rextday to apply the
requirements above to simulate the triggers. The basicaoflé@e simulation of Run lla
triggers is to (1) start from simulated offline uncorrectets jand taus, and derive estimated
and equivalent trigger level objects and (2) test the trigggquirements to determine if an
event passes.

— In the L1 parameterization, the probability that a certaimber of towers are above
a certain threshold is calculated as a function of offlinggjeaind inn regions. In the
simulation, random numbers are sampled from the probwkuiriction in a certaim
region and the numbers are counted as the simulated numtmverfs.

— In the L2 and L3 parameterizations, equivalent L2 and L3ofgects are “recon-
structed” from offline uncorrected jets witlt >15 GeV and uncorrected tau objects.
The reconstruction of L2 and L3 employs a jet-shift-remqualcedure in which ef-
fects from trigger-level jet resolution and reconstructdficiency are combined. The
trigger-level jet resolution functions are obtained byrtang offline jetgr in 20 GeV
intervals. The trigger-level jet reconstruction efficiging also called a turn-on curve
and is a function of offline jepy. L2 and L3 trigger turn-on curves for jets in the
calorimeter regions, CC, ICR and EC, are shown in Figs. 4.1 and #h2 fitting
functions shown are of the for'ﬁm wherepg, p1 andpy are fitting param-
eters ank is jet pr.



CHAPTER 4. DATASETS AND MONTE CARLO SAMPLES 33

PT Offline Jets (L2) CC |
1

0.8

h T2 turnen_cc

— Entries 1368046
— Mean 54.35
— RUS 2534
0.6 Underflow [
— ID\nerﬂolw 1
— ntegra 43.5
04— ¥2 I ndf 6B/ 46
— Brob 0
— p0 0.02069 +0.00039
0.2— pl 0.0297 + 0.0004
- p2 0,137 + 0,0009

0 L L L L L 1 1 L 1 L 1 L 1 L L 1 1 L 1 P L 1 | - 1 1

30 10 50 60 70 80 90
Pt (GeV)

PT Offline Jets (L2) ICR |
1

08— h_Z_turncn_jcr
— Entriss 567838
— Mean 5432
— RMS 2534
0.6 — Underflow 1]
— Ouerflow 1
— Integral 4354
04— 4 Indf 4532747
[— Prob o
— po 0000516+ 0.000103
0.2— pl 0000536+ 0.000103
— p2 0,433 + 0,007
0 [ e L L L L L L L
30 40 50 60 70 80 90
Pt (GeV)
PT Offline Jets (L2) EC ‘
1=
0.8 — h_Z_turncn_ec
— Entries T3ETT60
— Mean 54.20
0.6 — RMS 25.36
[— Underflow
— Overflow 1
0.4 Integral 4350
i £ Indf BOB.5 /46
— Prob 0
= 0 0.02252 + 0.00026
0.2— pl 0.02253 + 0.00028
= p2 03632 $0,0000
0 R RS ST ER I NSRS R R RS R
30 10 50 60 70 80 90
Pt (GeV)

Figure 4.1: L2 jet trigger turn-on as a function of offline pgtfor Run lla (after Ref. [49]).

4.2.2 Run llb Triggers and Parameterization
The triggers used to select Run Ilb events in the analysisefieat! as:

Acoplanarity trigger (JT1_ACO_MHT_HT) with the same requirements as for Run lla
but with more complex L1 & L2 terms.

Missing Hr triggers (JT1L_MHTACO, JT2_ MHTACO, MJ_MHTACO)  2require miss-
ing Hr >35 GeV wheréHt = 3 yigger jetsPT the two leading jets being acoplanar and
the missingHt vector (calculated using all trigger jets willy >9 GeV) being no
closer than 25 degrees to any jet.

1The trigger version is from v15.00 to v15.19.
2The trigger version is from v15.20 to v16.20.
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Figure 4.2: L3 jet trigger turn-on as a function of offline pgtfor Run lla (after Ref. [49]).

Missing Er triggers (JT1_MET, JT2_MET, MJ_MET)

3 requiremissinddt >25 GeV,

missingEr >25 GeV, the two leading jets being acoplanar and the midsingector
being no closer than 25 degrees to any jet.

The trigger parameterization for Run IIb is performed by riedi software that was de-

signed to simulate triggers of je&r and improved from its original form to include proper

treatment of tau leptons. Below is a brief explanation of tiggger simulation strategy:

L1: Use trigger efficiency turn-on curves to determine the podlhg that a reconstructed
object fired the trigger. Calculate the probability that tigger is fired by combining

the probability of different reconstructed objects. A ramdnumber is generated to

compare the combined probability and check if the L1 triggdired.

3The trigger version is from v15.20 to v16.20.



CHAPTER 4. DATASETS AND MONTE CARLO SAMPLES 35

L2: The trigger efficiency in data at this level is 100%

L3: Reconstructed objects are used to create equivalent tiggarobjects (i.e., L3 ob-
jects). Two quantities are used: the probability that ametoicted object is matched
to a trigger object and a correction to the transverse mamewf the reconstructed
object. These simulated objects are used to reproduce dasgdtit and missing
Ht to check if the trigger is fired.

If the event passes selection of both L1 and L3 simulatedjérs, then it is kept. The
improvements from the original software include the ddroraof new turn-on curves to
simulate the L1 & L3 response to jets with a high EM fractioatthre usually marked
as bad. The L1 turn-on curves for tau leptons need to be deriVbe L1 turn-on curves
derived from data can be seen in Figs. 4.3, 4.4, 4.5 and 4.6.figjbres are plotted in 3
tau decay types (tau type 1 and 2 correspond to 1-prong taydaecdes while tau type 3
corresponds to 3-prong decay modes. Section 7.2 will peomidre detailed information
about this classification).

100 20 40 60 80 100 20 40 60 80 100
Taup, (Gev) Taup, (Gev) Tau p (Gev)

(@) (b) (©)

Figure 4.3: L1 turn-on curves for 8 GeV L1 jet objects arisirgn (a) type 1, (b) type 2,
(c) type 3 taus. The red lines are the ones actually used asiri®n curves, the black
lines are a first approximation.

4.3 Monte Carlo Samples

Monte Carlo event generation is a key technique in particisiols to help experimentalists
to understand their experimental data. The procedure foergéing MC simulated events
is as follows:
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(@) (b) ()

Figure 4.4: L1 turn-on curves for 15 GeV L1 jet objects agsfrom (a) type 1, (b) type
2, (c) type 3 taus. The red lines are the ones actually usdtkdasrn-on curves, the black
lines are a first approximation.

| | L | Il
20 40 50 80 100
Taup, (Gev)

(@) (b) ()

Figure 4.5: L1 turn-on curves for 20 GeV L1 jet objects agsirom (a) type 1, (b) type
2, (c) type 3 taus. The red lines are the ones actually usdtedsiin-on curves, the black
lines are a first approximation.

| | I |
20 20 60 80

(@) (b) ()

Figure 4.6: L1 turn-on curves for 30 GeV L1 jet objects agsirom (a) type 1, (b) type
2, (c) type 3 taus. The red lines are the ones actually usdeeasn-on curves, the black
lines are a first approximation.
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1. employ a MC simulation to generate events at the fourevdevel;

2. simulate the DO detector response to final state particles

3. overlay minimum bias data events (i.e. superimpose ramdeileup events);
4. reconstruct the MC events with the same software used@rdeonstruction.

QCD-multijet events are not well-modeled by MC and hence mesterived from data.
Other physics sources needed in this analysis are: singlgs@, W+jets, Z+jets [51],
tt [50] and dibosonsWW, W Z, andZZ), and are simulated by MC. Generation of the MC
samples is done by the DO MC production group and defined biptheommon sample
group. Here are their brief descriptions:

Signal events: The single top MC events [50] are generated with thecGEETOPIn COM-
PHEP[52] MC event generatorsINGLETOP produces events whose kinematic dis-
tributions match those from NLO calculations. The top quadss is 170 GeV, the
PDF set is CTEQ6M [53], and the scales axefor the s-channel angin /2)? for the
t-channel. The top quarks and thébosons from the top quark decays are decayed
in COMpHEP-SINGLETOPt0 ensure the spins are properly transferredTHIA [54]
version 6.409 was used to add the underlying event andliréinal final-state radi-
ation. TAUOLA [55] (version 2.5) was used to decayeptons, anEVTGEN [56] to
decayb hadrons.

W+ijets, Z+jets, andtt: These were generated usingPGEN [57] version 2.11. This ver-
sion includes a jet-matching algorithm following the MLMegcription [58]. The
matching algorithm ensures that each jet is generatexL BgEN at the parton level
and not filled in bypYTHIA, thus avoiding regions &R and transverse momentum
space for the radiated jets that used to be double-countedh&W+jets andZ+jets
samples the events with heavy flavor jets adde@byHIA are also removed so as
not to duplicate the phase space of those generated alrgadyrlzEN [59]. For the
tt samples [50], the top quark mass is 170 GeV, the scale usedﬁvai p-zr(jets),
and the PDF set used was CTEQG6L1. For\tftejets events, the PDF was the same
as for thett events. The scale was, + 3 m#, wheremy is the transverse mass de-
fined asm® = n? + p2 and the suny M2 extends to all final state partons (including
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the heavy quarks, excluding tNé decay products) [57]. Thé/+ light-parton (Ip)
jets samples have to have parton-level cuts on the lighbpsitb avoid divergences
in the cross section. These cuts wexglp) > 8 GeV andAR(Ip, Ip) > 0.4 for all
massless partons (including the charm partons in theselesynpor théV +heavy-
flavor samples, there are mg or AR cuts on theb or ¢ partons, but additional light
partons have ther (Ip) > 8 GeV andAR(Ip, Ip) > 0.4 applied.

DibosonsWW,WZ, and ZZ: These were generated usimgTHIA, with inclusive decays.
They form only a small fraction of the total background.

The single top and+jets samples have the decays into electrons, muonsisad
separate samples, whereas\tfigjets andt samples have them generated together in com-
bined samples with approximately one third of each presactdrding to the branching
fractions). All the MC event samples are processed, firgsthgugh theGEANT [60] simu-
lation of the DO detector, “D@gstar”. “D@Sim” then does eéfteaics simulation and pileup
of any additional minimum bias interactions. At last, thesiated events are reconstructed
in the same way as data.

Table 4.2 shows the cross sections, branching fractiorsjratial numbers of events
of the Monte Carlo samples. The cross sections for single@bpdndtt pairs [62] are for
170 GeV top mass. Th&/+jets andZ+jets cross sections are fromPGEN.
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Table 4.2: Monte Carlo event samples with cross sectionschiag fractions, and initial
numbers of events. The symhbos$tands for electron plus muon plus tau decays.

The Monte Carlo Event Sets
Cross Section Branching No. of p17 No. of p20
Event Type [pb] Fraction Events Events
Signals
th — /+jets 1.12+0.06 03240+ 0.0032 0.6M 0.8M
tgb — /+jets 2.34+0.14 03240+ 0.0032 0.5M 0.8M
Signal total 3.46+0.21 03240+0.0032 1.1M 1.6M
Backgrounds
tt — (+jets 7.91+0.71 04380+ 0.0044 2.7TM 1.8M
tt — 0/ 7914071  01050+0.0010 1.4M 2.7M
tt —alljets 7.91+0.71 04570+ 0.0044 1.3M 1.8M
Top pairstotal | 7.91+0.71 10000+ 0.0000 5.4M 6.4M
Wb — ¢vbb 938 0.3240+0.0032 2.7TM 3.0M
W — fvcc 266 03240+ 0.0032 2.7TM 2.7TM
Wijj— vijj 24,844 03240+ 0.0032 35.2M 66.5M
W+jets total 25,205 03240+ 0.0032 40.7M 72.2M
Zbb — ¢¢bb 430 0.10098+ 0.00006 5.5M 5.0M
Zcc — tfcc 114 010098+ 0.00006 4.9M 5.7M
Zjj—lljj 7,466 010098+ 0.00006 34.4M 30.4M
Z+jets total 7,624 010098+ 0.00002  44.9M 41.2M
Diboson 171 10+0.0 3.7M 1.9M




Chapter 5

Object Identification and Event
Selections

In accelerator-based particle physics, reconstructegctdjn each event are a key compo-
nent by which physics quantities are measured or new phisidiscovered. One of the
final-state particles in this analysis is a tau lepton, staiypan important and special role.
Tau reconstruction and tau identification optimizationl w#é presented in Chapter 7. In
this chapter, general object identifications and eventtieles are introduced. Selection
efficiencies and event yield estimates for different sosiare also presented.

5.1 Object Identification

Reconstruction and identification of some general obje@geaesented below. Electrons
and muons are not key objects in this analysis. However,deraio avoid sharing events
with other single top searches, the events containingteswlelectrons and muons are ve-
toed. The result in the tau+jets channel will be combined Wiat in the two other leptonic
channels.

5.1.1 Electrons

Electron objects are reconstructed by clustering showerggdepositions in the DO elec-
tromagnetic calorimeter. Only electrons within the centadorimeter with|n9 < 1.1

40
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(CC) are considered. The tight isolated electron is definedlkmsws:
— Electronpt > 15 GeV

— fem is defined as the ratio of the cluster energy deposited in Mes&ction of the
calorimeter oveE;qq; it must be greater than 90%

— An electron should be isolated. Isolation is defined ae @itenergy in a halo around

the EM cluster over the total energy, i. E‘),ta'(REsM4()§<E§.“§)(R<O'2), whereR is the cone

radius,R= /(A@)2+ (An)?; it has to be less than 0.15.

— x? of the 7x7 H-matrix < 50.1

— The energy deposition must be matched with> 0 to a charged particle track with
ptT”‘ > 5 GeV andz(track, primary vertexx 1 cm

— Based on seven electron property variables, a likelihoedrigninant is created to
separate real electrons from W/Z boson decays from jets wiginge EM fraction.
The EM-likelihood L is required to be larger than 0.85.

5.1.2 Muons

Muon reconstruction and identification are based on inféionafrom the 3-layer muon
detector system and central tracks. Good muons are definge bgllowing criteria:

— Muonpt > 15 GeV
— Muon|n| < 2.0
— Muon quality: mediurf, with hits on 3 muon layers.

— Distance ire between the muon track and the primary vertgkack,PVx1 cm.

IH-matrix, a matrix that is used for shower shape analysisnieasure of similarity between the candidate
and a real electron shower. Théis computed ag? = szzl(x{ —X)Hij (Xj — Xj) wherex; j refers to electron

shower shape variables [63].
2The muon quality means that the muon reconstructed in thesysiem (called a local muon) is matched

to a track in the central tracking system
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— Muon must be isolated from any jets by the A&R(p, jet) > 0.5

— Calorimeter isolatiom%| < 0.12 in 01 < AR(cells muon cal-track < 0.4, and
track isolation];L(k;)pT\ < 0.12 inAR(track muon track < 0.5 cone [64].

5.1.3 Jets

Jet objects are reconstructed by the Improved Legacy Conerigigh (ILCA) [65] and
the jets with a cone siz@ = 0.5 are used in this analysis (called JCCB). Before applying
identification cuts, the Jet Energy Scale (JES) is used tecoraw jet energy to the energy
in a particle-jet level. For Monte Carlo samples, Jet ShgftiBmearing and Removing
(JSSR) is also applied to make simulated jets realistic {lilkkda Good jet objects are
identified by the following cuts:

— Highestpr jet (Jetl)pt >25 GeV, the second highept jet (Jet2)pr >20 GeV,
other jetspt >15 GeV

— Highestpr jet |n| <2.5, other jetsn| <3.4

— Fraction of energy deposited in the EM calorimeter overtdtal energy must be
0.05< fe < 0.95

— Fraction of energy deposited in the coarse hadronic seofithe calorimeter has to
be less than 0.4

— Removal of jets which overlap in space with EM and tau objects

AR(jet, EM/tau) > 0.5.

5.1.4 b-jets

There is at least onequark in the final state of single top quark decays, so one@bfets
should be present in each event. A neural network (BH¥t tagger developed by thejet
identification (B-1D) group is used to identify jets froba, c-quarks [66]. Taggable jetsn

3A taggable jet is defined astgjet candidate which matches a track-jet cluster within aec@dius 0.5.
The track-jet cluster must contain at least two tracks witlkast one SMT hit angy >1.0 (0.5) GeV for the
first(second) track [67].
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Figure 5.1: The two approaches to appiagging on data and MC samples.

data samples are directly tagged. However, the trackinigaid0 MC simulation is overly
optimistic in both the quality and number of tracks foundjatiresults in an overestimated
b-tagging efficiency in MC by 10-20% compared to data [66]. §,itaggable jets in MC
samples are given weights usibg c-quark and fake-jet tag rate functions (TRF). The two
procedures are shown in Fig. 5.1.

In the NN algorithm, a NN is trained on the outputs of thiegt identification algo-
rithms: Secondary VerTex (SVT), Jet Lifetime Impact Parenerobability (JLIP), and
Counting Signed Impact Parameter (CSIP) [66, 68]. A typiget is illustrated in Fig. 5.2.
Its characteristics include: a displaced secondary védexwvhich the SVT algorithm is
based), and displaced tracks with large impact parametersvfiich the JLIP and CSIP
algorithms are based).

If the NN output for a jet in data samples is larger than 0.Ti&jet is tagged aslajet.
This operating point corresponds td#agging efficiency o/40% and a light-quark fake
rate of~0.4%.

As mentioned above, fdr-tagging on MC samples;, c-jet and fake-jet TRFs are mea-
sured in data to weight MG-, c-quark and light-quark (gluon) events respectively. A TRF
value for each taggable jet represents the probabiiydf that jet being tagged asgjet.
The basic idea of weighting is to list all taggable jet perations per event and, accord-
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Figure 5.2: lllustration of a typicdl jet. A displaced secondary vertex and displaced tracks
with large impact parameters are used to idertiifgts (after [66]).

ing to each jet’s TRF value, to calculate the event probgtitit each permutation. This
probability can be applied to the event as a weight. The gueiability for permutation
is formulated by

R=T1rm [] @-p) (5.1)

tagged non-tagged

5.1.5 Missing Transverse Energy

Due to conservation of momentum in collisions, a neutrimo@mentum can be inferred
from measuring missing transverse energy. In practicedhe; is obtained by adding
up vectorially the transverse energies in all cells of the &M fine hadronic calorimeters.
For the coarse hadronic calorimeter, only cells belonging tgood” jef are added. Start-
ing from this raw reconstructed quantity, energy correcpoopagation from tau, muon,
electron and jet energy corrections are also applied.

5.1.6 Primary Vertex

A primary vertex is defined as the location where the hardtegat) interaction takes
place. It provides important information in discriminagineconstructed physics objects

4A “good” jet in DO has had quality cuts applied.
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coming from thepp collision. At DO it is reconstructed by means of an Adaptiertex
Fitting algorithm [69]. The reconstruction process of anary vertex consists of three
steps: (i) select tracks by requiring trapk >0.5 GeV and two or more hits registered in
SMT, and assign the tracks to a vertex to which the extrapdlpaths of the tracks point.
(if) Given a fitting resultx? for a tracki to a vertex, a weight is assigned to the track as
Trexp( (x?lf T8 wherex?2 .. IS set to 16. The procedure is repeated until the difference
of weights between two iterations is less thanm40Thus a list of potential vertices from
the hard scattering is obtained. (iii) select the vertex byi@mmum-bias probability selec-

tion algorithm [70] to discriminate the vertex of the haratering from those of minimum

bias events. In the selection chairgf primary vertexzpy| < 60 cm is required.

5.2 Event Selection

Based on the signature: one isolated tau lepfbp, and at least b-jet, the following
criteria are applied to create the pre-selected sample:

— Good data quality to make sure all subdetectors are wogkiogerly and removal of
duplicated events. This procedure is basically to remoxerbas, blocks, or events
defined by the DO data quality group

— Trigger requirements that have been presented in Secton 4

— Good primary vertex|zpy| <60 cm with at least three tracks associated.
— Missing transverse energy: 20E+ < 200 GeV

— Tau and jet identifications.

— Veto electrons and muons in order to combine the resultilndfannel with other
channels.

— One tau lepton per event

— Two or three good jets after removal of any jet which is mattto the good tau in
the event.
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In addition, cuts are applied on two topological variablielgjets-BTaggediet(Scalar
sum of jets’ energy for all jets except the leadimgagged jet) and\@(Jet2E+) in order
to suppress QCD-multijets. These cuts are applied only oRtirella datasét Table 5.1
shows cut values used.

Table 5.1: Summary of the cuk$jets—BTaggedied Cutl) andA@(Jet2f 1) (Cut2) to sup-
press QCD-multijet events.
1-prong tau 3-prong tau
1 tag 2 tags 1 tag 2 tags
>Cutl >Cut2 >Cutl >Cut2| >Cutl >Cut2 >Cutl >Cut2
2jets| 50 GeV 0.3 0 GeV 0.0 | 50 GeV 0.6 0 GeV 0.0
3jets| 100 GeV 0.3 60 GeV 0.0 | 100 GeV 0.6 80 GeV 0.0

5.3 Efficiency of Selections and Yield

Tables 5.2 and 5.3 show selection efficiencies on Run lla andIBualata samples, respec-
tively. Object and event selection criteria, numbers oinév@nd cumulative and relative
passing rates are also listed in the tables. Tables 5.4 &&hbw similar selection infor-
mation for signal MC samples.

The final dataset should consist of several background coaemis: QCD-multijet events,
tt, W+jets, Z+jets and diboson samples. MC samples generated at DO atécusenulate
tt, W+jets andZ+jets and diboson sources (see more details about the saimp&ec-
tion 4.3), however,QCD-multijet events are not well-moddty MC and hence must be
modeled from data. So an approach is developed to derive a Q@ijet sample from
a nonb-tagged dataset, which is discussed in Chapter 8. Table 6W8ssd summary of
yields after all selections arsjet tagging®. Tables E.1 — E.4 in Appendix E show similar
yields but in different analysis channels. Yield valuesha tables have been rounded for

5As seen before, Run lIb L1 has tighter requirements than Ruo kill more QCD-multijet events. Thus

we apply the cuts only to Run lla.
6«selections” here also includes a final boosted decisianduz to exclude the events used for determining

QCD-multijet normalization factors. See Section 8.6 fa CD-multijet normalization discussion.
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Table 5.2: Efficiencies of the different selections on skimdnRun lla dataset. The 1st
column shows the selection criteria used, numbers in the8hoinn are numbers of events
passing the selection in the 1st column, the 3rd column isuih&ulative passing event rate
and, the 4th column shows relative event passing rates.

Selection Criteria Passed EventsCumulative Rate Relative Rate
Initial number 58059422 100.00% 100.00%
Removal of duplicated events 58058780 100.00% 100.00%
Data quality selection 42965720 74.00% 74.00%
Tau jets triggers 20090025 34.60% 46.76%
Tight tau kinematic cuts and ID 590157 1.02% 2.94%
Remove matched jet with tau from jets 590157 1.02% 100.00%
Jet selection 590157 1.02% 100.00%
Single top jet selection 413386 0.71% 70.05%
Vertex selection 400934 0.69% 96.99%
Veto of good electrons 383037 0.66% 95.54%
Veto of good muons 381903 0.66% 99.70%
Bt cut 252141 0.43% 66.02%

clarity although all calculations are done with full-pr&ion values. Pie charts in Fig. 5.3
illustrate fractions of the different components of thb-lagged datasets of tau type 1+2.
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1tag and 2 jets 1 tag and 3 jets
[ signal(0.81%) [ W + light jets(1.99%) [ signal(0.39%) [ W + light jets(1.04%)
I Wbb + jets(2.56%) [ wec + jets(1.23%) I Wbb + jets(1.70%) [ Wec + jets(1.04%)
[ ]z +light jets(0.58%) [ Zbb + jets(0.29%) [ ] Z+light jets(0.28%) [ Zbb + jets(0.20%)
[ ] Zcc + jets(0.17%) [ Diboson(0.35%) [ ] Zcc +jets(0.12%) [ Diboson(0.18%)
B - lep +jets(0.46%) [ tT - dilepton(0.61%) B - lep +jets(1.99%) [ tT - dilepton(0.36%)
B ¢ - ailjets(0.02%) [ QCD(90.9%) B i - alljets(0.13%) [ QCD(92.6%)

(a) (b)

1tag and 2 jets

1tag and 3 jets

[ signal(1.65%) [ W + light jets(6.70%) [ signal(0.80%) [ W + light jets(3.59%)
I Wbb + jets(5.62%) [ wec + jets(3.21%) I Wbb + jets(3.26%) [ Wec + jets(2.03%)
[ ] z+light jets(0.57%) [ Zbb + jets(0.37%) [ ] z+light jets(0.32%) [ Zbb + jets(0.21%)
[ Zcc + jets(0.19%) [ Diboson(0.85%) [ ] Zcc +jets(0.16%) [ Diboson(0.42%)

B i - tep +jets(0.61%) [ tT - dilepton(1.18%) B i - tep +jets(2.60%) [ tt - dilepton(0.66%)
B - aljets0.01%) [ QCD(79.0%) B i - aljets0.04%) [ QCD(85.9%)

(©) (d)

Figure 5.3: Pie charts of ket data source components in tau type 1+2 for (a) Run lla, 2
jets; (b) Run lla, 3 jets; (c) Run llb, 2 jets; (d) Run lib, 3 jets.
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Table 5.3: Efficiencies of the different selections on skiednRun Ilb dataset. The 1st
column shows the selection criteria used, numbers in the@honn are numbers of events
passing the selection in the 1st column, the 3rd column isuh&ulative passing event rate
and, the 4th column shows relative event passing rates.

Selection Criteria Passed EventsCumulative Rate Relative Rate
Initial number 107275891 100.00% 100.00%
Removal of duplicated events 107275891 100.00% 100.00%
Data quality selection 86338171 80.48% 80.48%
Tau jets triggers (OR) 39214344 36.55% 45.42%
Tight tau kinematic cuts and 1D 1069833 1.00% 2.73%
Remove matched jet with tau from jets 1069833 1.00% 100.00%
Jet selection 1069833 1.00% 100.00%
Single top jet selection 638299 0.60% 59.66%
Cut on number of good jets 577009 0.54% 90.40%
Vertex selection 559251 0.52% 96.92%
Veto of good electrons 465270 0.43% 83.20%
Veto of good muons 462584 0.43% 99.42%
Et selection 347121 0.32% 75.04%




80 'S431dVHO

tb — evbb tgb— evbgb tb — tvbb tgb — tvbgb
Selection Criteria Nevt Rate Nevt Rate Nevt Rate Nevt Rate
Initial number 200000 100.0% 200000 100.0% 200000 100.0% 175000 100.0%%
Removal of events with zero luminosity199302  99.7% 199051 99.5% 199328 99.7% 174393 99.7CV(€|2
Removal of duplicated events 157099 78.5% 163069 81.5% 161900 80.9% 167050 95.5@
Data quality 147614 73.8% 151568 75.8% 150182 75.1% 155628 88.9%‘5'
Smearing of objects 147614 73.8% 151568 75.8% 150182 75.1% 155628 88.90@
Tau kinematic cuts and 1D 92152 46.1% 93927 47.0% 43329 21.7% 44595 25.50/%|
Remove matched jet with tau from jets 79642 39.8% 77645 38.8% 37529 18.8% 36746 21.0%32>
Jet selection 79642 39.8% 77645 38.8% 37529 18.8% 36746 21.00/%
Primary vertex selection 79481 39.7% 77450 38.7% 37364 18.7% 36570 20.9%|_<r:
Veto of good electrons 25492 12.7% 25689 12.8% 33379 16.7% 32805 18.7%3|
Veto of good muons 25489 12.7% 25689 12.8% 33233 16.6% 32650 18-70/‘?(101
Er cut 23194 11.6% 23299 11.6% 29480 14.7% 28862 16.5%‘@
Tau jets trigger simulation 11188 5.6% 10467 5.2% 14376 7.2% 12859 7.3%%|
=
n

Table 5.4: Numbers of events and cumulative rate of diffesetections on the Run lla single top MC samples.
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tb — evbb tgb— evbgb tb — tvbb tgb — tvbgb
Selection Criteria Nevt Rate Nevt Rate Nevt Rate Nevt Rate
Initial number 271797 100.0% 274546 100.0% 275085 100.0% 273896 100.0%%
Removal of events with zero luminosity270307  99.5% 273331 99.6% 273459 99.4% 272775 99.6‘V(c7|2
Removal of duplicated events 218794 80.5% 266272 97.0% 201899 73.4% 264518 96.6@
Data quality 210541 77.5% 256431 93.4% 194284 70.6% 254528 92.90/9":"
Smearing of objects 210541 77.5% 256431 93.4% 194284 70.6% 254528 92.90@
Tau kinematic cuts and 1D 125822 46.3% 151594 55.2% 51196 18.6% 67344 24.6‘%%|
Remove matched jet with tau from jets 109381  40.2% 126710 46.2% 44618 16.2% 56302 20.60/9[Z>
Jet selection 109381 40.2% 126710 46.2% 44618 16.2% 56302 20.6%%
Primary vertex selection 109029 40.1% 126262 46.0% 44406 16.1% 55990 20.4@
Veto of good electrons 36290 13.4% 42938 15.6% 39684 14.4% 50442 18.4%%'
Veto of good muons 36283 13.3% 42933 15.6% 39478 14.4% 50151 18.:’>‘)/q‘.{’.I
Er cut 32963 12.1% 38883 14.2% 34918 12.7% 44129 16.1%‘5
Tau jets trigger simulation 16778 6.2% 19794 7.2% 13876 5.0% 16942 6.2%%|
=
n

Table 5.5: Numbers of events and cumulative rate of diffesetections on the Run Ilb single top MC samples.

1S
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Source Events

Signals

tb+tgb signal T2£12
Backgrounds

W+jets 679:104 (19%)
Z+jets 6Gt10 (2%)
Dibosons 376 (1%)
tt 231+44  (6%)
QCD-multijets 262%498  (72%)

Background Sum
Data

3633£153
3845

52

Table 5.6: Yields with uncertainty after all selections lhamalysis channels combined.
The fractions of different background components are diswa in percent.



Chapter 6
Boosted Decision Trees

In data mining, classification and prediction models are grfwV tools to dig out hidden
useful information to make intelligent decisions [71]. Mauch techniques, such as neural
networks, actually play important roles in particle phgdy discriminating signal events
from large backgrounds. In this analysis, a technique d@l@osted Decision Trees (BDT)
is employed to develop a new tau ID optimized for single toprgudecays in Chapter 7.
And later this technique is also used to perform our ultinsittgle top signal-background
separation to be shown in Chapter 9.

In this chapter, particle physics jargon (instead of a campscience language) is used
to explain the BDT concept and working algorithm used in tmalgsis. Section 6.1
presents what decision trees are. Section 6.2 introdueehaitue called boosting, which
enhances the performance of decision trees. Section &3a&hbut one transformation of
BDT output.

6.1 Decision Trees

A decision tree is a popular predictive classification teghe to explore hidden knowledge
in data by making a flow-chart decision tree using sampleniegr Its output is used to
label classifications or as a descriptive means for calagi@onditional probabilities [71].
Ususally, particle physicists are concerned with only twagh classes of samples:
signal and background. A binary decision tree can be inted@and used to do this classi-
fication. Since the classification can be visualized by a Erbmary tree structure, in this

53
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respect, a decision tree is similar to a rectangular-cuatyais [72].

o ®

x4>C4 x4<C4
x2>C2 x2<C2 x3>C3 x3<C3
x1>C1 x1l<C1

ROOT NODE

Figure 6.1: lllustration of growing of a decision tree.

A decision tree growing process (also called building,ieay or training) is graphically
demonstrated in Figure 6.1 which is described blow:

Input

— Training and testing samples. The training sample is usech&chine learning
while the testing sample is for evaluating DT performance

— Topological and kinematic variables for each candidaéaev

— Splitting criteria which determine the best partitionghod data into individual
classes: signal and background.

Output A decision tree
Growing Procedure

1. Normalize the signal training sample to the backgrouaithing sample
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2. Start with th@oot nodé including all training events

3. The variable; is selected by splitting criteria to divide the whole santplevo
classes by the cut valu€;. Use majority voting to determine the class of split
samples

4. Continue to split the resulting nodes from the last stepetgrcsed variableg,,
X3 andxy

5. When some stop criterion is satisfied, stop splitting amarmeeither a binary
bit +1 (signal and background) or the signal purity of the leaftents

Thus a resulting decision tree is built with many nodes & bht depths. Each splitting
node should have a splitting test and a voting result stavetag it makes a decision when
a specific event passes it in later BDT output calculations.

The separation algorithm used in splitting nodes in grovargee plays a very impor-
tant role in performance of the resulting decision treesftv&oe called the Toolkit for
Multivariate Data Analysis in ROOT (TMVAver si on 3. 9. 6) [73] is employed in this
analysis.

A Gini index approach implemented in TMVA is the separatidtecion that measures
the impurity of a class-labeled training samplen this analysis. It is defined as

Gini(D) =p-(1—p) (6.1)

for a binary decision tree wheeis the probability that a node belongs to class signal or
background. Then for each variable, each of the possiblsplits is considered and the
subset that gives the minimum Gini index is selected. Thigmmim Gini index approach
maximizes the difference in impurity between the motherenadd the two daughters.

6.2 Boosted Decision Trees

Decision trees have broad applications in social scienckhoAgh the performance of
decision trees is outstanding, a shortcoming is their mktyadue to statistical fluctuations
when the tree structure is derived from the training samp®.[ A small change in the

1“node” means a group of events.
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training sets may yield large variation in the classificatid\ commonly used technique
called boosting can overcome this shortcoming by builditiigpeest” of decision trees and
making a decision on a majority vote based on each tree indtestt Boosted decision
trees were recently used by the MiniBooNE experiment [74 arfs] the single top quark
production measurement of the DO experiment [12, 13] anCDE experiment [14].

Boosting is a general technique which is not limited to decigrees only but can be
applied to any weak classifier. The most popular boostingahsdcalled the adaptive
boosting AdaBoos} in which misclassified events during the training of a tree given
higher event weights in the next cycle of tree training [7The initial decision tree is
trained starting with the original event weights. Miscléisd events, are then given higher
weights by multiplying by a common boost weightefined as

B
g <l—error> 6.2)

error

where “error” is the misclassification error rate of the poe¢ tree and is a parameter
needing optimization (usually it is set as 0.5). In the maawe tthe entire event sample is
normalized back to the sum of weights in the original tree set

If hj(x) is the output of theth decision tree given input variablgsthen the output of
all boosted decision trees is calculated by

YBDT(X):_ 'Z In(aj) - hj(x) (6.3)

rest

where the sum is conducted over all trees of the forest. Thiemapnumber of trees in a
forest is analysis-dependent. A forest which is too largstesacomputing resources and
may also suffer from worsening performance as it becomespieoialized on the training
sample (overtraining).

6.3 BDT Output and Transformation

Once a forest of trees is built, classification on an indepahdample of interest should be
done tree by tree and Eq. 6.3 is used to calculate a final oofplé forest. This step is the
calculation of BDT outputs. BDT have a flow-chart structure. Whalculating an output

of each tree, each event accepts decisions made by the timstd at each node, hence
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traces down the tree structure until it reaches the last.ndde signal-purity value at the
stop node is the BDT output of the event. The BDT output valugilized to quantify the
classification of the event. The BDT output covers the rand8,@]. But due to boosting,
the output is generally pushed to the middle of the rangendbilike events should have
BDT scores close to 1 while background should be close to & Signal purity distribution
is used in the BDT tau ID study in Chapter 7.

Instead of using the original BDT output value (signal pyrégpove, sometimes it is
necessary to transform the output to avoid the problemsecdabg sparse population in
extreme signal or/and background regions and limitedsstadi Thus, after the transforma-
tion, the BDT output values will spread over the whole rangelJ0In the final single top
discrimination, a transformed output called BDT probaypibutput is used. It is obtained
by applying a monotonic transformation function to origiB®T outputs. The basic idea
is illustrated in Fig. 6.2. A transformation function is emally defined as

BD-I_signal

Transformation Functiog-
BDTsignal+ BD Thackground

(6.4)

where BDTsignai and BDThackground@re original BDT purity distributions normalized with
each other that are shown in (a) of Fig. 6.2. Thus a transfitomaistogram is obtained
as shown in (b) of the same figure. However, if this histogramsed to transform origi-
nal BDT distributions, then the BDT probability distribut®obtained are very spiky due
to granularity as shown in (c). So a procedure is necessamhioh the transformation
histogram is fit by means of an error function. The fitted fuorcis used to replace the
histogram. Thus new transformed smooth distributions btaioed as shown in (d) of the
figure.

2|t should be emphasized that since the transformation ifamés required to be monotonic, it can neither
improve nor degrade the final sensitivity of BDT, and it justv@s as a tool re-distributing the BDT outputs,
hence making calculation easier.
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[ Transformation Function And Its Fiting___|
g
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Figure 6.2: lllustration of BDT purity output transformatiao BDT probability output.
(a) Original BDT purity output distributions normalized;) (ransformation histogram and
fitting function; (c) BDT probability output distributionsbtained by transformation his-
togram and (d) BDT probability output distributions obtairi®y transformation function.



Chapter 7
Optimization of Tau ldentification

In this analysis, the tau lepton is one of the important dsjeppearing in the final state.
The tau lepton is the heaviest lepton, with mass 1.78 GeMs lifetime (cT) is about 87um
[5], which indicates a tau decays before reaching any aelements of the DO detector.
At DO, hadronic tau candidates are reconstructed by measstettor signatures of decay
daughters, such as tracks, EM clusters, and hadronic dustau objects at detector level
appear as narrow-cone jets and hence tau samples are heavigminated by gluon or
quark jets. For this reason, the analysis needs a highspeafuce tau identification (ID).
At DO, there is a standard tau ID available provided by thdBagroup which uses several
tau kinematic cuts and a multivariate variable cut. Howetlee multivariate variable is
trained onZ — 11 signal and background samples so that it may not be optinfi@edus
originally from single top quarks. In this chapter, a studyahigh-performance tau ID
optimization for single top quarks by Boosted Decision Tr@3T) is introduced.

In the chapter, Section 7.2 discusses hadronic tau recatistn. Section 7.3 briefly
presents the DO standard Neural Network (NN) tau ID. In $ecfi.4, optimization of a
tau ID is introduced including motivation, methodology amdhted results. Section 7.5
introduces the estimation of systematic uncertainty oojtemized BDT tau ID. At last, a
summary is given in Section 7.6.

7.1 Hadronic Taus and Jets

Hadronic tau objects appear as narrow-cone jets in thetdeteecause:

59
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— Most hadronically decaying taus decay to final states withar three charged pions
(1-prong or 3-prong). Thus the number of daughter hadram & tau decay is less
than a number of hadrons produced in a regular gluon or gearKijack multiplicity
is also low compared to gluon and quark jets.

— In a tau decay, the daughter hadrons are boosted and arecatiomeated. Hadrons
from gluons and quarks are more widely spread than thoseain eldster.

Although tau samples are heavily contaminated by gluon arlgjets, one can use the
different features above to discriminate a tau from bacdkgdojets. The more hadrons in
an object cone, the more difficult the discrimination, soidfging 3-prong tau jets is more
difficult than 1-prong.

7.2 Hadronic Tau Reconstruction at DO

7.2.1 Tau reconstruction and types

A hadronic tau candidate is a collection of the followingestig [76]:

Calorimeter cluster

Constructed by means of a simple cone algorithm from all tiaeets with energy above
a threshold £0.05 GeV) around a seed towdtreeq>1 GeV) within a cone radius 0.5.
The cluster should have a widtins < 0.25 whererms width is the root square sum of
the Er weightedn-o distance of all calorimeter towers with respect to the tais éxe.
rms= \/zi”:l (An2 +A¢?) E—TT' wherei is the index of calorimeter towers abg = 5 Eri).

Electromagnetic calorimeter sub-clusters

Found by a regular nearest neighbor clustering algorithitinén3rd layer of the electro-
magnetic calorimeter where EM showers are expected to ribaahprofile maximum. If
such subclusters are found, then EM cells in other layergpegghower hits are attached to
them with theirEr as weights. The objects are used to reconstruct taus withahelecay
daughters like® or y radiation.
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Associated tracks

Any tau candidate must have at least one associated trackl oy the following track-
matching procedures:

1. Sort in decreasingt all the track candidates that are in a cone of 0.5 about the
centroid of the calorimeter cluster

2. Associate the highesgt track with pr > 1.5 GeV to the calorimeter cluster

3. Up to 2 more tracks will be considered if theirs within 2 cm of that of the first
track

4. The second track will be added if its invariant mass with filhst track is less than
1.1 GeV

5. The third track will be added if its invariant mass with firat 2 tracks is less than
1.7 GeV and the sum of the three track charges is +1Dr

Motivated by hadronic tau decay modes, it is convenient &sify hadronic recon-
structed tau candidates in three types:

Type 1 One calorimeter cluster and one associated track
Type 2 One calorimeter cluster, one associated track and at laadEM subcluster

Type 3 More than one associated track and wide calorimeter clustieior without an EM
subcluster

Tau type 1 and 2 correspond to 1-prong tau decay motles 1t°v andt™ — p™v while
tau type 3 is for 3-prong decay modes suchras- et 1tr et (TO)v .

7.2.2 Tau property variables

There are~40 property variables calculated in a reconstructed taaabbjThe variables
can be classified in four categories. Some examples are:
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Kinematic variables

tau energy, momentum, pseudo-rapidjtyazimuthal angle etc.

Shower shape variables

— Tau cluster width rms= \/z{‘zl[(Acn)z (Ani)?]- £ ET'

— tau profile= ET%}ET? whereEr1 andEr; are the transverse energies of the two most
energetic calorimeter towers in a tau object.

— emf and fhf: EM and hadronic fractions of tau energy depdsih the EM and
hadronic calorimeters respectively.

Eleadlng EM subcluster
— prf3 == EEWS , a ratio ofEt of leading EM sub-cluster ovéfy deposited in

the 3rd EM Iayer

Isolation variables

— caliso :TELTC‘“ whereEt andEg . are taukr within a coneR < 0.5 andR < 0.3,

Tcore

respectively.

trk
— trkiso = ZE‘[”U wherey pi is sum ofpr of non-tau-associated tracks within a cone

size 0.5 ands p{™ is the sum over all tau-associated tracgs:

— EM12isof :%TEEMZ whereEEMI andEEM? gre energies deposited in the 1st and
2nd layers of the EM calorimeter.

Calorimeter-track correlation variables

T

EL
— ET_o_sum :'W whereE; is the tau calorimeter cluster transverse energy.
T

— dalpha =\/(A@/sinB)2+ (An)2/mwhere the angle differencefg andAn, are be-
tween the vector sum of tau tracks and the vector sum of EMtets,0 is an az-
imuthal angle of the centroid of the vector sum of EM-cluster
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7.3 Standard DO Tau ID

7.3.1 Introduction

No single tau variable defined above can serve alone to depanss from the fake tau
backgrounds. So, a multivariate technique called neutalor&s (NN) is used in the stan-
dard tau ID. The standard tau ID consists of two parts: kirtentaits and a NN cut. The
kinematic cuts provide a very loose selection before apglyne NN cut. The NN study is
done in the context of measurementogpp — Z) - Br(Z — 11) [76]. In the measurement,
the data candidates of interest are fr@dnbosons decaying to(— pvyV¢)T, isolatedp-t
pairs. So, the multivariate technique is trainedZon 1(— pvy V)T signal and background
samples although it serves as the standard tau ID at DO.

7.3.2 NN Training and Testing

The tau identification group defines tau signal and backgtaamples, and trains and
tests NNs on these samples for three tau types [77]. Taulssgnaples are defined by
Z — 1t MC samples withZ boson mass altered to 130-250 GeV for training Arimbson
mass = 60-130 GeV for testing. The background training sansptiefined as the data
events having an anti-isolatg@gt pair in which the muon is located within a jet cone by
AR jet < 0.5, i.e., anti-isolated, and this anti-isolated muon andalecandidate are back-
to-back, |A@(p,T)| > 2.5. Such events are likely to be QQtb events. The background
testing sample is based on isolajed pair data events in whicp andt have the same
charge sign. The standard tau ID NN training uses about Eeteel variables depending
on different tau type$.

7.3.3 NN Output

If the NN output for a tau candidate is close to 0, it is assutodzk a gluon jet or a quark
jet. A tau candidate with NN output near 1 is assumed to belgdaea Thus, applying a
NN output cut can reduce the jet background. For example)dnimy a cut of 0.9 on NN

1In addition to NNs which are used to remove jet backgrounekethis also a NN available to remove
electrons [77], which is not discussed here.
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output of tau candidates with transverse energy between@@@GeV, the jet background
is reduced by a factor of 50 while the total efficiency is kep?©% [78]. The NN tau ID
is used as a standard tau ID at DO, however, no analysis ctatadau ID optimization
study such as the one discussed below.

7.4 BDT Tau ID Optimization

7.4.1 Motivation

Ideally, a general tau ID should work well for all tau-relhtstudies. However, tau iden-
tification can be affected by several factors, such as thet@rerironment. Generally, the
busier the event is, the harder it is to identify the tau. Tiaedard DO tau ID is derived
partially from aZ — tt MC sample which is a relatively clean environment. If thendtard
tau ID is applied to busier events, for example, single tamevwith extra jets compared to
Z — 1T events, the tau identification efficiency may be reduced dubkéd change of event
topology. Different physics processes may also have éiffetau kinematics causing tau
properties such as profiles, and isolations to vary. Thisnsé&zat the standard ID may not
be optimal for every process. In addition, from the backgobside, the standard NN tau
ID is able to optimally discriminate real taus from its sgediraining background but may
not do so from other backgrounds. For example, it will be ghdwat it is not optimal for
single top backgrounds.

The loss of efficiency of the standard tau ID for single toprguavents is visible in
the NN output distributions shown in Fig. 7.1. In the figuy signal samples are single
top MC samples irs- andt-channels and — 11 samples withZ mass 130-250 GeV and
60-130 Ge\2. Fake tau samples are a tau trigger skimmed data sample &fibedilater,
and the anti-isolateg—t data sample defined above. A high NN output indicates a high
probability to be a true tau while a low NN output means theeobjs likely a fake tau.
As expected, the NN distribution & — tt MC events is peaked at 1.0. However, the NN
outputs for tau candidates from single top quark eventstese a small peak at low NN
output, which indicates that the standard tau NN ID idergtiieme true taus as fakes. The

°The two samples are the tau signal samples used by the stab@atau NN ID samples. One with
mz=130-250 GeV serves as a training sample while that mith60-130 GeV is the test sample.
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Figure 7.1: Comparison of NN output between different sample

standard tau ID is not optimized for the single top analysis.

7.4.2 Hadronic Tau ID Optimization Strategy and Results

65

As seen from the discussion above, the definition of trairing testing samples is cru-

cial for tau ID. The different samples may be characteristidifferent tau kinematics of
interest. In addition, multivariate techniques and maltiate training variables also play
important roles. Discussions below will focus on thesedlaspects.

Training and Testing Samples

In the optimization study, the tau signal sample is made freconstructed taus matched to

true-generated MC visible taus in single top quark tau cebevents with either a spatial
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distanceRreca 1ruet < 0.5 or the least spatial distance. A general dataset is skinmbyed
data quality and tau-jet trigger requirement®econstructed taus in the skimmed dataset
are treated as a fake tau background sample with very kg#letau contamination. In order
to mimic the cuts used in the realistic analysis, both thestgoal and background samples
also have the following kinematic cuts applied:

Cut| Tautypel Tautype2 Tautype3
In| < 3.0 3.0 3.0
Er > 10 GeV 5 GeV 10 GeV
leadingp'™ > 7 GeV 5GeV 5GeV
S P > - - 7Gev

Then each of the signal and background samples is splitwicetjual-sized subsamples
for training and testing purposes.

Neural network tau identification (NN) and boosted decisiorirees (BDT)

NN is the default multivariate technique used to derive tiieial DO tau ID by the DO tau
ID group [77]. Chapter 6 has provided an introduction to the B&hnique. Compared to
NN, BDT has some advantages as follows:

— BDT employs a binary tree technique, which makes fast mgiossible. With
similar performance to other multivariate techniques sastNN, BDT runs faster
[72]. The BDT training time depends on several factors, faregle, number of
training variables used, sample size and BDT boosting trelesy

— There is no special requirement on the range of BDT inputitrgivariables, while
for NN, the range of the variables must be adjusted to [0, 1].

— Boosting is available in BDT to improve stability and traigiperformance.

— BDT performance is insensitive to variable correlationshisTmeans that adding
well-modeled training variables never degrades perfooman

“tau-jet triggers” here are online-level jet triggers snmost taus can also be identified by jet trigger
algorithm. Most tau candidates in the tau-jet skimmed sar(plB8%) are fake taus: real jets or fake jets.
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In order to justify which technique has a better performaincthis tau optimization,
a comparison between BDT and NN is conducted given exactlpdinge conditions for
both techniques. In the comparison, the BDT algorithm (sexti@e6 for more about the
algorithm) used is provided by the TMVA packdgeThe BDT training parameters are
50 tree cycles (1 original tree + 49 boosting tregs}; 0.5, Nmin. leaves= 100. The NN
algorithm used is the one used by the DO tau ID group. Starid@rthu ID samples and
variables [77] matching the ones used by the DO tau ID groapaed for both BDT and
NN training. Table 7.1 lists variables (defined in Sectio2 @nd Appendix C) used in
the comparison. Fig. 7.2 shows the NN and BDT output distioimst From Fig. 7.3, it
is concluded that NN and BDT have comparable performancetotytpes 1 and 3 when
trained using exactly the same training samples and vasdbbwever, the BDT is much
better than the NN for tau type 2. So, the BDT is selected to bal#fault multivariate
technique in the tau ID optimization for this thesis.

MV output DT fiter output, 50 bins MV output DT filter output, 50 bins
E DT filter output, 50 bins 05 DT filter output, 50 bins
05 il —— NNfilter output, 50 bins F —— NN filter output, 50 bins
Lk —— NN filter output, 50 bins L —— NN filter output, 50 bins
F 04—
04— =
r 0.3
03— E
02f- 02
0af~ - 01" +
eSS i L OIS 7

% i
0 01 02 0.3 0.4 05 06 0.7 08 09 1 00 01 02 0.3 0.4 05 06 0.7 0.8 0.9 1

(@) (b)

Figure 7.2: BDT and NN ouput distributions (a) tau type 2 (h) tgpe 3. The shaded
distribution in yellow is the BDT output of the signal sampl&ile one in green is that of
the background sample; The distribution in red is the NN oug the signal sample while
one in blue is that of the background sample.

4The version of the package TMVA used is 3.9.2 with modificatim the node splitting algorithm used
by the BDT package developed by SFU.
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Figure 7.3: Comparison of background rejection vs. sign@tiehcy between NN and
BDT based on the same training samples and training varia@g$au type 1 except ICD
region (b) tau type 1 ICD region (c) tau type 2 (d) tau type 3
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Table 7.1: Variables used per tau type in the standard tauRé&formance comparison
between BDT and NN is based on those variables (see Sectiamd 2ppendix C).

Variable Tau type
2 3

EM12isof
]0)

profile
prf3
trkiso

SSRNIEN
< S

rms
ET_0o_sum
fhf

etad

dalpha
emET_o ET
ettl o ETiso

NN NN
SN N N N VRN NIENIEN

NN N YN NN

Training variables

A tau object reconstructed by DO software had0 associated discriminating variables
(properties). However, not all of them will be used in tau tBining since there are some
strategies for selecting training variables:

— Training variables must be well modeled

— Training variables should not be strongly influenced byralevent kinematics

Variables should have some distinguishing power betwagmndnd other types of jets

Select as few as possible in order to decrease multivaeelb@ique training time and
reduce complexity.

In order to reduce complexity without affecting performena following “tear-down” pro-
cedure is used to reduce variables given the facts that:
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— extra variables may not significantly improve performance

— adding new variables to a variable list may change the chokeer of existing vari-
ables

In the procedure, all variables are gradually reduced usiedollowing steps:
1. All available tau variables are used. The list is cafledluct i on-1 evel - 0.

2. Train a BDT on the entire variable list above. After traginank variables in the list
by discriminating power, pick the firtd; variables ag educti on-1 evel - 1.

3. Then go on training a BDT on threeduct i on- | evel - 1 list and rank a new list
in discriminating power, pick the firdd, variables as educt i on- | evel - 2.

4. Go on reducing variables in the list until the number ofalales reaches 10 at most.

5. Compare performance of the BDT achieved using these vailistd to select which
level is the one with acceptable performance and few vagsainicluded

The procedure above is done for the three tau types indiljd#avariable change map of
tau type 2 is shown in Figs. 7.4 to illustrate how the procedmorks. On the map, each
variable column corresponds to a variable level. After geaining, the five least powerful
variables in gray are removed from the list. Arrows indicateking “flow” direction of
each variable. Graphs in Fig. 7.5 show performance usirdgrdiit training variable lists.
Performance using level-1 to 4 variables is almost samamaiiatistical uncertainty. The
level-4 list contains 20 final training variables and is ugethe realistic analysis. As a
comparison, the NN default performance curves are also shiowhe same graphs. The
new trained BDT for tau type 2 and 3 have much better perform#man the default NN.
Due to the limited statistics of training samples, the défece in performance for tau type
1 can be explained as statistical fluctuation.

Tau properties vary with tau energy because the taus inréiffeenergy ranges have
different shower shapes. Since tau energy is not used asfdraning variables and the
BDT may not be able to distinguish the tendency of slight cleangt shower shape with
energy, it may be worthwhile to split training samples inti@nsverse energy bins to grow
separate trees and apply these trees back to the samplesespmndinger. Graphs in
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Figure 7.4: Change map of variable ranking for tau type 2 tiertariable definitions, see
Section 7.2 and Appendix C).

Fig. 7.6 show this effect for tau type 1, 2 and 3 respectivegrformance based & -split
training samples is slightly better than without splittiimg all T types. TheEr-split BDT
are used in the final analysis.

In the standard tau NN ID, a regular cut on NN output of eachytpa is recommended
by the DO tau ID group: NN0.9 for tau type 1 and 2, and NMND.95 for tau type 3 (tau
type 3 has a larger background from jets, so a tighter cut eslee than tau type 1 and
2). Table 7.2 shows given a NN cut (column 1), that correspdndhe NN background
rejection rate (column 2) and the NN signal efficiency (catuB). If the BDT background
rejection rate is fixed to the same value as the NN, the BDT bwgjffiaiency (column 4)
and the equivalent BDT cut (column 5) are calculated usingadignd background effi-
ciency curves of NN and BDT. The last column “BDT cut” means theiealent BDT cut
to achieve the given background rejection rate. Of coursih respect to NN and BDT
performance, the conclusion is consistent with the grapbs/s above. For example, if
NN cut = 0.9 for tau type 2, the NN background rejection ratalisut 98.3%, the NN’s
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signal efficiency is 51% while the BDT’s is70%, a more than 40% gain. Fig. 7.7 shows
the curves of equivalent BDT cuts given NN cuts on which thngepoints corresponding
to NN=0.9, 0.9, 0.95 have been marked by red dots.

Table 7.2: Signal efficiency comparison between NN and BDEmithe NN cut and the
same background rejection rate for tau type 2

NN cut

NN Background Rejection

NN Signal Ef]

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

74.6%
81.9%
85.6%
88.1%
89.7%
91.2%
92.3%
93.2%
94.0%
94.5%
95.0%
95.5%
96.0%
96.4%
96.8%
97.3%
97.7%
98.3%
99.0%

90.2%
87.4%
85.6%
83.8%
82.2%
80.8%
79.4%
78.1%
76.6%
75.0%
73.2%
71.6%
69.5%
67.2%
64.5%
61.0%
56.8%
50.6%
39.5%

[.BDT Signal Eff. BDT cut
97.4% 0.452
95.8% 0.479
94.6% 0.495
93.5% 0.509
92.8% 0.518
91.6% 0.532
90.4% 0.544
89.4% 0.554
88.2% 0.567
87.4% 0.574
86.5% 0.582
85.3% 0.592
84.2% 0.601
83.0% 0.611
81.6% 0.622
79.6% 0.637
76.5% 0.657
69.0% 0.696
60.5% 0.733

Fig. 7.8 is a summary plot of signal efficiency ratio of BDT oWN in terms of
background rejection efficiency in percent faype 1, 2 and 3. The higher the background
rejection efficiency is, the more the gain of the signal edficy. The gain for tau type 2
goes as high as 50% while type 1 and 3 improve by 15-20% at tiyehighest rejection.
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Figure 7.5: Comparison of background rejection rate vs. aigfficiency with different
variable levels. (aj type 1, (b)t type 2 and (cX type 3.
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Application of BDT to electron signal channels

Electrons leave tracks and deposit energy in a narrow corleeircalorimeters, so they
can also be found by tau reconstruction algorithms with higgonstruction efficiency,
and most of them are labelled as tau type 2. Single top quarktewf interest in the
analysis have channels with the final state of electron @ifs)jwhich are from the single
top electron channel and tau channel decaying to eleGrongact, these electron events
provide an important part of signal sensitivity. It is nesay to check the new tau ID
performance when it is applied to the MC sampledlof- evbb andtgb — evbgh. A
basic cross check is to apply the new tau ID to reconstruct€dt®matched with true
electrons withAR < 0.5 to calculate performance diagnostic curves. Fig. 7.9 cvegp
the performance of the default NN with BDT for tau type 2 basedhe single top MC
samplegb — evbb andtgb — evbqgb (as signal) and a tau-jet trigger skimmed dataset (as
background). Itis concluded that the newly derived tau BDRain performs better than
the standard tau NN ID. For the NN output cut 0.9, signal efficy enhancement s 24%.

[ Background rejection vs. signal efficiency for T type 2 ]
L DR R =i o I

o
©
©

0.92 i
——e—— Et-split BDT (Variable level 3) . ]
—=—— Default NN "

0.9 [ | | |
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Signal efficiency

o
©
=)

Background rejection

0.94

Figure 7.9: Performance comparison between default NN B for tau type 2 based on
the MC samplesb — evbb andtgb — evbgb (as signal) and QCD-multijet skimmed data
(as background).

5The electron events are not present in the single-top-giaaekectron channel analysis because the elec-
trons do not pass the stringent criteria for that analysis.



CHAPTER 7. OPTIMIZATION OF TAU IDENTIFICATION 1

7.5 Estimation of Systematic Uncertainty of Tau ID

7.5.1 Uncertainty Derived from Fluctuation of Input Variables

For each BDT input variable, the predicted distributionsighal and background events
are divided in a number of bins. The number of events in eatishiaried according to the
statistical error (assuming a Gaussian distribution) &edffuctuation is propagated to its
BDT output distribution. Thus when applying a BDT cut, theransuncertainty originating
from the choice of the cut [79].

The basic steps to estimate the uncertainty are:

— Generate pseudo-experimental datasets for one inpuintgarariable. For the input
variable, this is done by sampling the expected number ih éact of the variable
distribution from a Gaussian distribution to form a new dlgition. The mean of the
Gaussian distribution is calculated as a difference betvilee number of data and
background events in each bin. Then a new BDT output distobus obtained by
propagation from the generated spectrum of that input blriby reweighting. For
one input variable, 50 pseudo-experimental datasetsegoonding to 50 weighted
BDT output distributions) are generated.

— Calculate the ratio of the number of events passing a p&tiBIDT cut on the BDT
output distributions generated above to the number wittloeitcut. The standard
deviation of the ratio distribution is taken as a measurdeffiuctuation uncertainty
for this variable.

— Repeat the steps above for all input variables.

— The overall systematic uncertainty from all input varesbis calculated as the square
root of a quadratic sum of the standard deviations of allimauables.

The samples used for studying single top quarks containdevevents and are not ap-
propriate for this approach. The data sample used here vimsngld by applying single
muon triggers, muon and tau kinematic cuts and data quaditipitions for identifying a
tau+muon pair. The muon and tau must be back-to-back Ai@gmuontau) >2.5. Back-
ground MC samples includ&/ — pv andZ — ppand the signal MC sample 5 — tt.
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Figure 7.10: Example distributions of the ratio of the numbkevents which pass the
equivalent NN cut, 0.90, to the total number of events betbeecut. Each distribution
corresponds to one ensemble of 50 pseudo-datasets flagtaatindividual variable.

Each sample was weighted by the trigger probabilityaft@hapg the same kinematic cuts
as the data sample.

Figure 7.10 shows the ratio distributions for different BDiput variables from which
a systematic uncertainty value is derived. Each entry oftia dastribution corresponds
to a pseudo-experimental dataset. The square root of thdrajuee sum of the standard
deviations of the ratio distributions is counted as a syatenuncertainty from fluctuation.
Table 7.3 lists systematic uncertainties in tau types giiffiarent BDT cuts.

5Those BDT cuts are equivalent to NN cuts 0.7, 0.8, 0.85, 0c90e®5 respectively. "Equivalent” means
that the same background rejection rate is given.
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Table 7.3: Systematic uncertainty values in tau types giviéerent BDT cuts

. Tau type 1 Tau type 2 Tau type 3
Equivalent NN cut ] ] ]
BDT cut Uncertainty| BDT cut Uncertainty| BDT cut Uncertainty
0.70 0.554 0.57% 0.608 0.53% 0.518 0.44%
0.80 0.598 1.07% 0.643 0.85% 0.533 0.65%
0.85 0.630 1.63% 0.665 1.01% 0.542 0.99%
0.90 0.652 1.81% 0.697 1.22% 0.559 0.99%
0.95 0.707 2.55% 0.744 1.80% 0.598 1.60%

7.5.2 Uncertainty of BDT Output Efficiency

Another important uncertainty is from the different tau IBicency between data and
MC. Ideally, a correction to the tau ID output probability déwp function (PDF) should
be derived andapplied to MC samples to fix the MC tau ID efficyetHowever, since the
BDT tau ID is based on the single top sample and its yield is sergll, there is no direct
approach available to derive such a correction in our case smples enriched ih— Tt
events used in the DO standard NN tau ID study are also enmgplogree. Fig. 7.11 (a) shows
a comparison plot of BDT outputs & — 11 enriched samples fartype 2 between data
and background while Fig. 7.11 (b) is a ratio of PDF of datar ®@F of MC forZ — tt
events, and the straight line and grey band are the fit linatarid confidence band. The
band is almost overlapping with 1.0 and it is reasonable sigasa 10% uncertainty to
replace tau ID correction.

This uncertainty is summed in quadrature with the statifiltictuation uncertainty
mentioned above and the overall tau ID uncertainty is quagetil%.

7.6 Summary

This chapter discusses the study of tau ID optimization iiogle top search in thetjets
channel. The two multivariate techniques NN and BDT are coethaGiven a NN back-
ground rejection rate 0£98%, the NN signal efficiency is 51% while the BDT efficiency
is 70% for tau type 2, a relative gain of 40%. For tau type 1 arairglative gain of~18%
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Figure 7.11:Z — 1t enriched samples fartype 2. (a) comparison plot of BDT outputs
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can be achieved.



Chapter 8
Background Modeling

A high energy physics analysis aiming to search for smahag needs a very precise
background model that is descriptive of the final analysis@a. The quality of such
an analog between the final analysis sample and the modetédroand sample can be
estimated by comparing various topological variables oséhsamples. If those variable
distributions are well-matched to each other, then the @vo@es are compatible in many
dimensions and the model is suitable.

In this chapter, Section 8.1 provides an outline of the bemligd modeling. QCD-
multijet tag rate functions play a very important role in rebdg the background. Sec-
tions 8.2, 8.3 and 8.4 present measurement, normalizatibaplication of QCD-multijet
tag rate functions. Section 8.5 talks about non-QCD-multpatamination removal aiming
at achieving a pure QCD-multijet sample. Section 8.6 pres2iQQCD-multijet normaliza-
tion based on a QCD-multijets-enriched sample. At last,ityuehecking of the model is
given in Section 8.7 by comparing the final analysis samptkthe background sample.

8.1 Outline of the Background Modeling

One important signature of single top quarks in any charstbla presence of at least dme
guark in final state. Signal-to-background is thereforeagaled by requiring the presence
of b quark jet(s). At an operating poildN > 0.775, b-jets are tagged with approximately
40% average efficiency and requiring 1 ob2ags leads to a-55% yield for single top
signal. At this operating point, the mistag rate for lightagks and gluons is-0.4%. Of

81
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course b quarks can also be produced in strong interactionsdikgg) — bb production,
so the search still suffers from both fakeand realb backgrounds. The cross section for
bb is as much as 3 orders of magnitude smaller than light jet Q@iRHet events, so light-
quark mistags are expected to dominate.

As addressed previously, a tau in a final state is likely todo@mstructed as a narrow-
cone jet and, conversely, a narrow jet may be reconstructesl fake tau by the tau re-
construction algorithm. For this reason, the main backgdow single top quarks in the
tau+jets channel is QCD-multijet events. This is unlike ttieeoleptonic channels of single
top quarks whergV+jets events are the main background. At DO, QCD-multijehevare
not simulated well by the MC generation, thus they have todseved from data. For other
minor background sources such\isjets, Z+jets,tt and diboson, there are corresponding
MC samples available to use. They have been described in &hé&ptOur background
model is formulated as

(Backgroundl = (QCD-multijety + (W + jets) + (Z +jets) + (tt) + (diboson.  (8.1)

Fig. 8.1 shows examples of leading order Feynman diagram fgpical QCD-multijet
event and &V+jets event.

[

QI

jet
jet
(a) (b)

Figure 8.1: Examples of leading order Feynman diagram foa @CD-multijet event and
(b) aW+jets event.

The principal steps in the background model can be sumnubaige

1. Derive a tag rate function (TRF) to describe the probatibttb-tag any individual
jet in the sample.
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2. Apply this TRF to the data and MC samples that have-tegged jets.

3. Using simulated MC events for other physics sourcesyactthem from the TRFed
data sample to get “pure QCD-multijets”.

4. Combine the derived background sample, pure QCD-multiyets simulations of
other background sourceis; W+jets, Z+jets, dibosons.

The corresponding flow chart is shown in Fig. 8.2 and each abepe has been labeled
with Arabic numbers in the figure.

In Step 1, the ratio of the number bftagged jets in our data sample to the total number
of jets is defined as a tag rate: the average probability tfegdtia identified as & jet. The
tag rate is measured as a function of et n and multiplicity. More information can be
found in Sections 8.2 and 8.3.

In Step 2, these TRFs are applied to those data and MC eventsaVea nob-tagged
jets. The TRFed data sample is kinematically similar to oatysis sample, but there is no
overlap since at least otretagged jet is required in our analysis sample.

In Step 3, physics background sources suclta®/+jets, Z+jets and dibosons are
removed. In this procedure, the contaminationst oiV+jets, Z+jets and diboson are sub-
tracted from the (b-tagged TRFed QCD-multijet sample. Other background sowaces
modeled through simulations. See Section 8.5 for this ren@dvsimilar procedure is used
to ensure that any small single top signal contaminatioménbiackground data sample is
also subtracted. For signal contamination removal, see0be®.3.4.

In Step 4, the QCD-multijet events after contamination reahave normalized to data
in a QCD-multijets-enriched region, as defined by the baakgdedominated region of the
multivariate discriminant described below. The normail@awill be discussed in Sec-
tion 8.6. This data-derived QCD-multijet sample is then comab with theb-tagged MC
samples to make the background model.

At the end of the background modeling procedure, approxindis0 topological vari-
ables are investigated to confirm that data and the backgrmodel are in good agree-
ment.Since single top quark events represent only a snaalidn &2%), and are spread
throughout each distribution, signal will not significgnthodify this agreement.
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Data-TRF

! TRFed Data, i.e.
| Rough QCD Multijets
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.

e Background Model

Figure 8.2: Flow chart to illustrate outline of the backgrdumodeling
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8.2 Measurement of Tag Rate Functions from Data

A tag rate function is the probability that a taggable jetientified as d-jet by a neural
networkb-tagging algorithm. It is derived as a function of @t and pseudorapidity.

The TRFed QCD-multijet background prediction is comprisetheftwo basic steps as
follows:

1. derivation of TRFs from data and
2. their application to the B-tagged data sample

Data TRFs are derived based on titagged and pré-tagged data samples that are se-
lected by the object identifications and event selectiastedi in Tables 5.2 and 5.3. Data
TRFs are then applied to a sample withtxtiagged jets (called the Btagged sample),
thus making sure that the data-TRFed multijet backgroundiegonal to the final analy-
sis data sample.

The definition of a tag rate is:

Number ofb-tagged jets ib-tagged sample
Number of all taggable jets in pre-tagged sample

TRF = (8.2)

where the ratio is a ratio afumbers of objectsinstead of numbers of events. It is param-
eterized in terms of jet pseudorapidifyand transverse momentupy. Due to statistical
limitations in somept-n bins seen from Fig.8.3, however, TRir,n) can not be well mea-
sured. So, TRFs by - TRF(pr) - TRF(n) (whereN is a normalization factor) are measured.
This works because the TRFs in terms of thegetand the jety are not highly correlated
as seenin Fig.8.4

The data TRFs are also parameterized in jet multiplicity lbimd in data-taking period
bins (Run lla and Run IIb). In order to take into account the TRpetelence on the
energy scale of events, the TRFs are also measuréft ibins,i.e. Ht < 100 GeV and
Ht > 100 GeV samples. The TRFs in terms of pgtare fit using an empirical function:

Po PT — P2
TRF(pr) = — <l+ py - Erf ) (8.3)
(pr) = Co)
on the RunllaHt < 100 GeV sample wherpg, p1, p2 and p3 are fitting parameters, and
Erf() is an error function. However, Eq. 8.3 doesn'’t give addit for the other datasets.
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TRF as a function of jet P, and n (2-jet bin) ‘ TRF as a function of jet P, and n (3-jet bin) ‘

Figure 8.3: 2-D tag rate lego graph as a function ofgetandn. Left: 2-jet bin; Right:
3-jet bin. These plots show that some regions have too femsver a 2D TRF.
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Figure 8.4: 2D Tag rate graphs as a function ofgetandn. Left: 2-jet bin; Right: 3-jet
bin. Correlation factors shown on the graphs indicate thafltRFs in terms of the jgbt
and the jet) have low correlation.
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So another empirical function

TRF(pr) = po+ p1logpr + pzlog pr? + psexp(— o2
5

is used to do fitting on other samples. The last term is a Gauggnction with meas pa,

0 = Ps.
The tag rate points in terms of jgtare fit using another empirical symmetric function:

TRF(N) = po+ pan?+ pan* + pan® + panBePsn! (8.5)

wherep;s are fitting parameters. Figs. 8.5 — 8.12 show TRFs and th@igfitesults. The
gray bands in the graphs are 68% confidence level bands by whecsystematic uncer-
tainty on TRF measurements is estimated.

[ Tag Rate Functioninp __for 2jet | X2/ ndf 8o/9 | [ TagRate Functioninp _for 2jet | X271 ndf 9/11
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Figure 8.5: Tag rate curves and their fitting lines witlh tonfidence band in terms of jet
pr in the 2-jet bin based on the Run lla data sampld4ax 100 GeV, b)Hr > 100 GeV

8.3 TRF Normalization

Since a product of TRfpr) and TRKN) is used to represent TRBr,N), a normalization
factorN is needed so that TRBr,n) = N- TRF(pt) - TRF(n).
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Figure 8.6: Tag rate curves and their fitting lines witth tonfidence band in terms of jgt
in the 2-jet bin based on the Run lla data samplddax 100 GeV, b)Ht > 100 GeV
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Figure 8.7: Tag rate curves and their fitting lines witkh tonfidence band in terms of jet
pr in the 3-jet bin based on the Run lla data sampld4ak 100 GeV, b)Hr > 100 GeV

8.3.1 Normalizing in Each Jet Multiplicity Bin

The simplest normalization approach is

Ntagged jets— ; [z N- fi] ) (8.6)

where the index is the taggable jet index per eveil; fi = N- TRF(pr) - TRF(n) is the
probablity of a taggable jet witpt andn being taggedN is derived separately in each jet
multiplicity bin used in the analysis. For simplicity, ortlye case in one jet multiplicity bin
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Figure 8.8: Tag rate curves and their fitting lines witth tonfidence band in terms of jgt
in the 3-jet bin based on the Run lla data samplddax 100 GeV, b)Ht > 100 GeV
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Figure 8.9: Tag rate curves and their fitting lines witly tonfidence band in terms of jet
pr in the 2-jet bin based on the Run IIb data sampledak 100 GeV, b)Ht > 100 GeV

is discussed here. Using the normalization factor caledlay the simple approach above,
there are two outstanding problems:

— The number ob-tagged jets does not match the data, as shown in Fig. 8.13.

— For a sample with B-tagged jets per event, the predicted sample does a poof job o

modeling variables which relate these-Pagged jets, such &R, Agetc This arises
because correlations betweeh-agged jets are not considered in the normalization.
The correlation is due to the presencégéts, originating from gluon splitting —
bb, in the sample. The higher the momentum of the gluon, theeckbe 2b jets will
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Figure 8.10: Tag rate curves and their fitting lines witti @onfidence band in terms of jet
n in the 2-jet bin based on the Run Ilb data samplddax 100 GeV, b)Hr > 100 GeV

[ Tag Rate Functioninp__for 3jet | X2 7 ndf 7.2/7| | TagRate Functioninp _for3jet | X2/ ndf 16/13
Prob 0.41 Prob 0.23
0.07F po -0.035% 0.100 0.07¢ po ~0.068+ 0.040
r pl 0.025 + 0.060 r p1 0.04 +0.02
F p2 -0.0022+ 0.0089 F p2 -0.0038+ 0.0021
0.06 p3 0.0075 + 0.0038 0.067 p3 0.011+ 0.005
r p4 33£2.0 r p4 36+63
F 5 F 5
005 p 54284 005 p 15£7.0
0.04F 0.04— + + #* ‘ |
: " 1 T
0.03 + ?’ > 0.03 +
- T :
0.02F V{k 0.02H
C | 1 | 1 | 1 C | | | | | |
TS o R L
]elpT ]etp_r

Figure 8.11: Tag rate curves and their fitting lines wittr @onfidence band in terms of jet
pr in the 3-jet bin based on the Run IIb data sampledak 100 GeV, b)Ht > 100 GeV

be. One approach to minimize this is to set a cuf\&to reduce contamination from
the QCDbb events, however, this would cause a loss of signal events.

The two problems above can be fixed by solving two equationsidering correlations
between b-tagged jets, which is discussed in the next section.
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Figure 8.12: Tag rate curves and their fitting lines witti @onfidence band in terms of jet
n in the 3-jet bin based on the Run Ilb data sampledax 100 GeV, b)Hr > 100 GeV

8.3.2 Separate Normalization by Number ob-tags

Due to the correlations discussed above, it is necessargrieedseparate TRFs in the 1-
b-tagged jet bin and the B-tagged jet bin. Due to the limited sample size, however, TRF
curves for the sample cannot be precisely measured in bi@gged-jet sample. However,
we assume that TRF of the 2-tagged sample has the same shdyz atthe 1-tagged
sample,but a different normalization factor. The tag philig of one event with onlyone
b-tagged jetisy; B [1;(1— P;) wherei and j are taggable jet index per event while the tag
probability for one event with onlywo b-tagged jets i RPj [k j (1 — P) wherei, |
andk are taggable jet index per event. Since events with threeane batagged jets are
rejected in the analysis, the total numbebeghggedeventscan be written as

Neagged evts = (1-tagged-jet eventst (2-b-tagged-jet evenits

= er.X [lei!;ll(l—lej)]
+ezm;

whereN; and N, are normalization factors in the singbetagged jet bin and the double
b-tagged jet binfi = TRF(pr) - TRF(n), p(AR;j) is a weighting function reflecting cor-
relation between twd-tagged jets per event, which will be discussed later. Siryil the

p(ARjj)'szi'szJ‘ |_| (1—N2fk)] (8.7)
KA
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Figure 8.13: Number db-tagged jets with one universal normalization factor. Lbftear
scale; right: log scale.

total number ob-tagged jetscan be written as

Niagged jets = (b-tagged jets in 1-tagged-jet events(b-tagged jets in 2-tagged-jet events

b)) [leiﬂu_lej)]

J#1

2 ARj) -Nafi - Nofj [ (1—Npf 8.8
+{ezv“;[p( Rij)-N2 zjk!:i!j( zk)]} (8.8)

The first term is a number di-tagged jets in single-tagged events while the 2nd term is
the number ob-tagged jets in double-tagged events (the factor 2 in the front of the second
term means b-tagged jets per event). The only difference between thesestjuations
above is the factor 2 so that it is easy to isoldieandN,. So

2Ntagged events~ Ntagged jets— th Z [Nl fi I_I (1 —Ng 1:j )] (8-9)
evt | J#

and

P(AR;) - N2fi-Nafj T (1- szk>] (8.10)
KA, |

whereNgged jets Ntagged eventé@Nd fj j k are all known. A tricky issue is how to calculate

values ofN; andN, from Eq.8.9 and 8.10, and how to take the correlation fefAR;j ) into

Ntagged jets— Ntagged events— % ;
evti£|
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account in the predicted Rtagged sample. Here iterations have to be used. For example
first fix Ny in the bracke{1— N; fi) as 0 and determine anothiéy in the Eq.(8.9), then in

the 2nd loop fixN; in the bracket1— N; fj) as one determined in the 1st loop to determine
a newNjy, thus after several iterationBl; is close to one asymptotic value. It is noticed
that the relative change iN; is less than 0.1% after 5 iterations. Normalization factors
different jet multiplicity bins and different tau type biase listed in Table 8.1.

Table 8.1: Normalization factors in different jet multigty bins and different tau type bins.
The normalization factors’ precision is shown with 3-4 sfigant figures while in practice
4 digits after the decimal are used within each iterationthedelative uncertainties on the
factors are less than 0.1%.

Ht bin | Reco bin| Normalization Factor 2 jet 3 jet
Ny 36.6 50.0
pl7 No (Taul2) 79.6 98.0
N2 (Tau3) 83.0 100.0
Hr < 100
N1 34.0 40.0
p20 N2 (Taul2) 69.2 73.1
N2 (Tau3) 785 96.2
Ny 27.2 29.6
pl7 No (Taul2) 46.7 46.3
N2 (Tau3) 36,5 473
Hr > 100
Ny 26.0 27.8
p20 Np (Taul2) 46.0 50.1
N2 (Tau3) 334 441

8.3.3 Correlation Between J-tagged Jets

One source of b-tagged-jet events in the TRFed QCD-multijet samplg is bb. Since
the gluons have large momentum and no real mass, bgtrarks will be boosted in the
direction of the original gluons. Therefore, backgroundrds with two reab-jets often
have a smallAR between the jets. So, a weighting function is derived in 2o0fAR in
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Figure 8.14: Weighting functiop(AR) showing angular correlations between twtagged
jets.

order to take this correlation into account.
The weighting functiorp(AR) is defined as

ARdistribution in the b-tagged sample

~ ARdistribution in the predicted sample (8.11)

P(AR)

(see Fig.8.11) Values from this function are used to weigatavents with b-tagged jets.
Using this approach, reasonable normalization in bothtdgged and B-tagged samples
is obtained, as shown in Fig. 8.15.

8.4 Application of TRFs

As indicated above, a data-TRF value for each taggable jezsepts thaverageprobabil-
ity (p;) of that jet being tagged ashgjet. In order to avoid loss in MC statistics, a similar
procedure by means of event permutations presented iro8éxcfi.4 is used to apply data-
TRFs to the zerds-tagged sample. The Eq. 5.1 is still valid. The two differenérom the
standard M(b-tagging are:

— The data-TRFs imply thaverageprobabilities of jets being tagged in specifie
tagged and pré-tagged samples in this analysis.
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Figure 8.15: Comparison of the numbenmsfagged jets between TRFed multijets and data
for (a) a 1b-tagged-jet sample and (b) ab2agged-jet sample

— The data-TRFs should be applied to the Zeitagged sample while the standard
TRFs should be applied only to MC samples.

Thus the number of predictddtagged jets should be

predicted\pjet = Z [ z nbjetst] (8.12)
vt | perm
wherenpjets is the number of taggable jets labeledogets per permutation arfg is given
by Eq. 5.1.

The b-tagged sample is compared with the data-TRFed predicte@lsamentioned
above and they are in good agreement (see Appendix B for aisopgplots between the
b-tagged sample and its data TRFed predicted sample in thesaositive analysis bin:
Run Ilb, tau type 1+2 and 2 jets one of whichiisagged).

8.5 Removal of Non-QCD-multijets Contamination from
Multijet Model

As mentioned above, there is a contamination of non-QCD#®aukvents in the back-
ground data sample because thie-txgged data sample is not a pure QCD-multijet sample.
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When data TRFs are applied to théd@agged data sample, some non-QCD-multijet events
also have been tagged by data TRFs. So, in order to get a purenQ@et data sample

in background, any contamination from, for examplésjets should be subtracted. Other-
wise some events in the model will be double-counted oncéBesamples are added to
the background model. This correction is realized by suhitrg data-TRFed MC samples
from the data-TRFed QCD-multijet sample. These MC sources/dfgets, Z+jets,tt and
di-boson. The background sample becomes a combinatiowvefadeata and MC samples
represented as

(Backgroung = (PureQCD-multijets+ (BTaggedMC$ (8.13)
= (TRFedQCD-multijets— (TRFedMC$ + (BTaggedMCs.  (8.14)

However, it is technically impossible to perform a direcbsaction between a data-
TRFed QCD-multijet sample and data-TRFed MC samples to geea@@D-multijet sam-
ple since they belong to different samples. So the subtrattas to be done by reweighting
the TRFed QCD-multijet sample by means of a ratio weightingtion. The ratio weight-
ing function is defined as

(PureQCD-multijets
(TRFedQCD-multijets
(TRFedQCD-multijets— (TRFedMC$

N (TRFedQCD-multijets (8.16)

where the functiomratio is parameterized in leading jgtr, tau leptonpy andir. As an

ratio= (8.15)

example, Fig. 8.16 shows comparison plots of these vasailesW transverse masM‘{V
before and after reweighting on the sampl&kFedQCD-multijets in the most sensitive
channelt type 1 and 2, b-tagged jet and total 2 jets. Subtractionl®@RFedMG samples
forEr from (TRFedQCD-multijets suppresses the high region, hence the scaled QCD-
multijet sample becomes pure. For leadinggetandt pr, the subtraction effect appears in
the low and intermediate regions that are non-QCD-multpetamination regions. Also as
expected, the effect suppresses the Ihilg(ﬁregion where there are more non-QCD-multijet
events.

Thus the background model becomes

(Backgroundl = ratio( pl2@"9 ¥ p B0y % (TRFedQCD-multijets+ (BTaggedMC3
(8.17)
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Figure 8.16: Comparison plots of (&) (b) leading jetpr (c) T pt before and after QCD-
multijet reweighting (d) W transverse mass.

Comparison plots of topological variables between data asldround based on the model
above will be shown below. A systematic error introduced tgliag the TRFed QCD-
multijet sample will be discussed in Chapter 9.2.

8.6 QCD-multijet Normalization

Before making a cross section calculation, it is necessanytmalize the pure QCD-
multijet sample obtained in last section. In this procedtire sample of events with BDT
output lower than 0.2 is assumed to be enriched in QCD-mudtyents. Eq. 8.18 below is
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used to calculate QCD-multijet normalization factors:

(# of datg — (# of background M¢
Raco-mutjets = (# of QCD-multijets

where(# of Sample (“Sample” is data, background MC or QCD-multijets) is the remn
of weighted event entries in the BDT output region [0.0, 012jter the orthogonal BDT
output region [0.2, 1.0] is used to determine cross sectaunes. Table 8.2 lists the nor-
malization factors and statistical uncertainties calmda The table also lists the factors
that are determined in the BDT region [0.2, 0.5], indicatihgttthe factors calculated in
the two regions [0.0, 0.2] and [0.2, 0.5] are consistent witatistical uncertainties and
that the normalization approach is insensitive to the a&0d region used. The statistical
uncertainty ofRocp-muttijets Will be used as a systematic uncertainty.

(8.18)

Table 8.2: QCD-multijet normalization factors and theiratgle statistical uncertainties
in different channels. The factors are calculated in two BBg@ions [0.0, 0.2] and [0.2,
0.5]. The factors in [0.0, 0.2] are used in the QCD-multijetlsy. Those in [0.2, 0.5]
indicate that the factors determined in the two regions amgeswithin uncertainties and the
QCD-multijet normalization is insensitive to the actualuabf the cut selected.
Run lla Run lIb
[0.0,0.2] [0.2, 0.5] [0.0, 0.2] [0.2,0.5]
SF RelErr SF RelErr SF RelErr SF RelErr
Ttype 1+2/1tag/2jets 1.0 39% 1.0 95% 10 29% 1.1 8.3%
Ttype1l+2/1tag/3jets 1.0 3.8% 13 109% 10 28% 1.1 8.1%
Ttype 1+2/2tag/2jets 0.8 145% 1.8 77.2% 08 13.4% 1.0 69.6%
Ttype 1+2/2tag/3jets 1.0 132% 20 71.5% 1.0 10.2% 1.3 51.5%
Ttype 3/1tag/ 2 jets 1.0 38% 11 121% 1.0 25% 12 82%
Ttype 3/1tag/ 3 jets 1.0 36% 11 11.7% 10 25% 09 8.2%
Ttype 3/2tag/ 2 jets 1.0 133% 0.9 506% 0.9 135% 2.7 91.8%
Ttype 3/2tag/ 3 jets 1.0 11.2% 05 255% 0.9 10.2% 0.9 31.6%
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8.7 Comparison Plots Between Data and Background

There are around 150 event topological variables avaitalteeck the quality of the back-
ground model in the analysis. Comparison plots of the 20 éoyfed variables (by BDT
discriminating power) between data and background in th&t sensitive channel (Run llb,
T type 142, 1 tag and 2 jets) are shown in Section 8.7.1. Mearohghese variables can
be found in Table 9.2 in Chapter 9.3.2. Figure 8.17 shows the sgcheme used in the
comparison plots in this analysis.

—— DATA
tb— ev bb
B tb- tv bb
I tqb- ev bgb
B tqb- 1™v bgb
W + light jets
Wocc + jets
B Whbb + jets
Zlp
Zcc + jets
I Zbb + jets
diboson
B it . lep +jets
BN it - dilepton
B it - all jets
B QCD-multijets

Figure 8.17: Legends of comparison plots.

In summary, these comparison plots are in a good agreememéd® data and back-
ground, which indicates that the multijet tag backgrounddetanatches the data. The
Kolmogorov-Smirnov (KS) test is a numerical tool to undanst how well the background
sample models the data sample [80]. The KS test is used h&stitoate compatibility
in shapes of variables between distributions of data ankidsaand samples. The closer
the KS value is to 1, the better the agreement between dathakground is. A cut on
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KS values (KS-0.1) is made to select the topological variables used in BBihitrg later.
These KS values are calculated based on histograms witiyexmaimber of bins to avoid
the effect of histogram binning on the KS calculation.

However, due to the fact that the background is QCD-multgetsinated and the back-
ground sources modeled with MC represent only a small fyaaf the total background,
itis hard to claim that the backgrounds are properly moditad these tests alone. There-
fore an important cross check on our background samplesfisrpeed later by measuring
thett cross section. If the measurtdctross section is consistent with the current measure-
ment by DO, then it will provide strong supporting evidenkattthe background model is
correct. Detailed studies can be found in Section 9.4.

8.7.1 Comparison Plots in the Bin: Run llb, Type 1+2 Tau, 1b Tag, 2
Jets
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Chapter 9
Cross Section Measurement

In particle physics, the experimental cross section caralmilated by
. Nobserved— NBackground
[ Ldt-€

whereNopservedS the number of observed evenigackgroundiS the number of background
events predicted from data measurements or calculatedtheony, £ is the instantaneous
luminosity and [ Ldt is the integrated luminosity determined by the acceleratmger
prescalestc, ande is a product of various acceptances and efficiencies froranhégysis.

In the tau+jets channel alone there is not enough signaitséiyso make a measure-

(9.1)

ment of the single top cross section. In this case, settimgitih this channel alone can be
achieved instead and measurement of the cross sectiorddt®in combination with other
channels. A multivariate technique can serve as a powerdlitd generate a good variable
to discriminate small signals from background. All seasctoe single top production at DO
use a statistical approach based on Bayes’ theorem to sé&t immeasure cross section
values [81]. In the analysis, the same statistical meth@angloyed to derive the limit of
single top production in thetjets channel and to measure a cross section.

In this chapter, first of all, an overview of the cross sectimeasurement methodology
used is given in Section 9.1. An introduction of systematicartainties is given in Sec-
tion 9.2. Section 9.3 describes in detail the multivariatalgsis using boosted decision
trees. Section 9.4 discusses a cross check on the backgnoaohel by measuring the
cross section. Section 9.5 and Section 9.6 show expectethaadured cross section re-
sults. In Section 9.7 the results of the electron/muon-ge#nnels and the tau+jets channel

103
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are combined.

9.1 Cross Section Measurement Methodology

9.1.1 Bayesian Statistical Approach

The basic idea of the Bayesian statistical approach is taledéca posterior density func-
tion given an observed count and then to derive relatednmdition, such as cross section,
experimental sensitivitgtc. The idea can be formulated by the modified Bayes’ theorem:

P(theorydatg [ P(datdtheory)P(theory) (9.2)

where ‘theory’ stands for some hypothesis (i.e., a modelitbhps to understand data) and
‘data’ is the experimental result. The posterior prob&philP(theorydata, is a subjective
probability given the dataP(datdtheory) is the likelihood of observing the data, given the
theory. The prior probability of the theor(theory), is interpreted as how believable the
theory is.

Given a mean event yieldipredicted by one model, the probability to obselbvevents
is described by the Poisson distribution:

g ddP

P(datdtheory) = p(D|d) = riD+1)

(9.3)

wherel is the Gamma function. The mean yielccomprises of the signal ardl sources
of background:

d :a-c+_ibi (9.4)

wherea is the effective luminosity, a product of the signal accap&and the integrated lu-
minosity, o is the signal cross section, abdhe expected number of events for background
sourcei.

Then the posterior probability density can be computed by

P(theorydatg — p(a|D) = / / 0(0,a, b|D)dadb — % / / L(D|o,a,b)T(a, a,b)da;ing)
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wherea is a vector of the effective luminosities abds a vector of the background yields
in multi-bins, A’ is a normalization factor by, ™ p(c|D)do = 1 (Omaxto be defined later),
L(D|o,a,b) is the likelihood of measurin® givenao, a andb, 1(o,a,b) is a prior proba-
bility density in terms ofo, a andb.

It is conventional that the signal cross sectmis uncorrelated witta andb, thus the
prior function can be expressed as

P(theory = 1(0,a,b) = m(a,b) - 1(0) (9.6)

The prior density of the cross sectiofo) is assumed to be flat in terms of

1

— 0O<o<o

m(g) = { Omax e (9.7)
0, otherwise

whereomay iIs chosen above which any preferred value for the signalscsestion is ig-
nored. In this analysisimax = 30 pb. Eq. 9.5 therefore becomes

1
AL Omax
The prior densityri(a, b) encodes knowledge of the effective signal luminosities lzak-
ground yields. The integration in Eq. 9.8 is performed nuocadly by means of MC im-
portance sampling. Randomly sampling a large number of pd@Qf byx) from the prior
densityri(a,b), Eq. 9.8 becomes

p(a|D) = / / L(D|o,a, b)Ti(a, b)dadb. 9.8)

K
P(o[D) 0 3 L(DIo, 2, by). 99)
k=1

Effects of systematic uncertainties are taken into accdunhg the generation of the sam-
ples by direct sampling as follows. For a systemaysof one source, given shifted sys-
tematic distributiongﬁys and nominal distributioly, a yield shiftAyisys of this systematic
for this source can be obtained. Itis obtained by samplirafag(0, 1)isysfrom a Gaussian
distribution with mean 0 and width 1:

Dyisys=S" % 9(0,1) x |yig,s— Y| (9.10)
wheres* is a scale factor, that is normally 1. If only shape uncetyais considered,

st = Ey% where the sum goes over all of the bins of the systematicdtiatosy for
isys
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this source. 19(0,1) > 0, (+) is taken, otherwise~) is taken. Over all of the systematic
uncertainties, the overall shifted yield can be formulated

Y’ =Y+ z Ayisys (9.11)
isys

An upper limitoc at confidence level (CL) can be obtained by solving:

/0 ** o(o|D) = CL. 9.12)

A cross section measurement is the peak location of the parstiensityp(o|D).

9.1.2 Sensitivity Estimation

Three parameters to estimate experimental sensitivitydes@issed below. They are the
ratio of peak to width, the Bayes factor significance and theeBawtio significance. The
larger those parameters, the higher the experimentaltseysi

Ratio of peak to lower half-width

Half of the interval around the peak location covering 68%hefwhole area is considered
as an estimate of the width of the posterior density distidou The ratio of the peak
location to the lower half-width is treated as one of pararseto estimate experimental
sensitivity. This is a concept similar to the number of stddleviations.

Bayes Factor Significance

Given two hypotheseblg andHy, where the null hypothesidy is the background-only
model and the alternative hypothebis is the signal+background model, the Bayes factor

B1g is defined as
8, P(OIHY
p(D[Ho)
Its significance is calculated ky2logB;. This quantity is only valid for the expected case
since it is based on a specific signal model.

(9.13)
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Bayes Ratio Significance
A Bayes ratio can be defined as

5 _ PID)

= S =0D) (9.14)

whereg is the peak location of a posterior density function. Itaigance is/2logB;. The
optimal analysis is assumed to be the one with the largestota@ Bayes ratio significance.

9.1.3 Pseudo-data Ensembles and Linearity Test

In order to validate the approach outlined above, a ling&et that checks potential mea-
surement biases is performed using pseudo-data enserRbisdo-data sets are generated
from a pool of weighted signal and background events. Eaehgisdata set is then ana-
lyzed in the same way as real data. Different signal crossosesccan be used as inputs to
generate different ensembles and the linearity of the @gbroan be checked.

Five ensembles of pseudo-datasets were generated frorgrbackl and signal model
events. Each ensemble is comprised of around 2000 psepaoi®ents with all systematic
uncertainties considered. In this procedure, the five sigoal cross sections are 2.0, 3.46,
6.0, 8.0 and 10.0 pb. The output cross section values areunegbs the same way as
for real data. Linearity implies consistency between ignd output cross section values.
Graphs in Fig. 9.2 show the output cross section distribstiaf all ensembles separately
and Fig. 9.1 shows a good linear fit through their peak locatid he test indicates there is
not a linearity problem in this approach.

9.2 Systematic Uncertainties

Systematic uncertainties are taken into account in thescsestion calculations in two
ways: as a normalization uncertainty on background sangpléss a shape uncertainty on
the distributions of the background samples and expectg@dksamples.

Table 9.1 summarizes all sources of systematics unceesiand their relative uncer-
tainties. Each of the sources is described below. Detadlblg$ of uncertainties for each
individual analysis channel are listed in Appendix F.
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BDT Ensemble Linearity Test
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Figure 9.1: Linear fit through the peak locations of outpudssr section distributions
(Fig. 9.2) given different input single top cross sectiotuea. The linear fitting covers
the range from 2.0 to 10.0 pb.
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Measured XS with Input XS: 2.0pb full_ens_peak Measured XS with Input XS: 3.46pb full_ens_peak
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Figure 9.2: Measured single top cross section in ensembtbgiiferent amounts of input
single top: (a) 2.0 pb (b) 3.46 pb (c) 6.0 pb (d) 8.0 pb (e) 1®0 p
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— Integrated luminosity
The 6.1% uncertainty on the luminosity estimate that comas the uncertainties
on the measured inelastp cross section affects the signdl, Z+jets, diboson and
on ppyields.

— Theoretical cross sections
The uncertainty on the cross sections for sig@afiets, diboson antt includes the
theoretical uncertainty for all and the uncertainty frora thp quark mass fdt. The
values used are 11.2%bj, 7.4% (qb), 3.6% ¢+jets), 5.8% (diboson) and 12.7%

(tt).

— Trigger efficiency
An uncertainty of 5.5% to the trigger efficiency is assignElde uncertainty arises as
5% from the multijet trigger parameterization (not takingpiaccount taus) and a 2%
(estimated) uncertainty added in quadrature for the diffee in tau and jet turn-on
curves.

— Instantaneous luminosity reweighting
The instantaneous luminosity distributions of all MC saesgre reweighted to match
Run lla or Run llb data distributions as appropriate. Theahdistributions are from
the minimum bias data overlaid on the MC events to simulageautiderlying events,
and are generally at too low values for later data-takingld@mns. The uncertainty
on this reweighting is 1.0%.

— Primary vertex modeling and selection
The distribution of the primary vertices along the beamim&IC is reweighted to
match that in data. The uncertainty on this reweighting &% (negligible). The
uncertainty on the difference in primary vertex selectitiiciency between data and
MC is 1.4%.

— Tau lepton reconstruction and identification efficiency
An 11.0% uncertainty is assigned as the uncertainty on th&fson reconstruction
and identification efficiency. A detailed description of tretermination can be found
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in Section 7.5. It is applied to all MC samples excéptjets'.

— Tau energy scale
A tau energy scale uncertainty occurs in applying tau eneayyection by taking
associated tracks into account for low energy tau candid&#evalue of (1.0-1.5)%
is applied to all MC samples except+jets.

— Jet fragmentation
A systematic uncertainty covers the differences betweefetifragmentation models
of PYTHIA (used for theaLPGEN samples in the analysis) aréRwIG. The resulting
uncertainty of 5% is obtained by comparing thecceptance of the two models and
is applied to all MC samples.

— b-jet fragmentation
The uncertainty on the modeling bfjet fragmentation is 2.0%. The value is deter-
mined by the difference between fragmentation parameigoizs measured by SLD
vs. LEP data.

— Initial-State Radiation (ISR) and Final-State radiation (FSR)
The values are determined usiigamples by comparing results usingm®IA with
ISR and FSR parameters varied up and down.

— Jet reconstruction and identification
The efficiency with which jets are reconstructed and idezdifias an uncertainty of
1%. This is estimated by taking the difference of thejjand jet multiplicity between
the data and MC.

— Jet energy scale and jet energy resolution
A flat uncertainty of 4%-14% is assigned to the jet energyescalcertainty since
in some regions statistics and smoothness are lacking ¢ordiete the shape of JES
samples. For the same reason, a flat uncertainty of 4% is eldorsthe JES in all
MC samples.

W+jets samples are applied scale factors so that they areatinem to data, which serves as a constraint.
Thus with the constraint, no other systematics are coreiter
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— WH+jets and Z+jets heavy-flavor scale factor
This is treated in the same way as in the electron/muon €y8#. An uncertainty
of 13.7% is assigned to the heavy-flavor scale factor§\fto, W cc, Zbb andZcc.

— ALPGEN reweighting onW+jets sample
Due to a known issue aboWw+jets MC samples that certain variables of the leading
log ALPGEN Monte Carlo disagree with data, the discreparai#dse\W+jets events
have to be fixed. Sindé@/+jets samples are not the dominant background source, the
reweighting functions derived in electron/muon+jets alea are applied and a shape
uncertainty from the reweighting functions is included.

— Sample statistics
The MC and data samples that are used to estimate the sighbaakground shapes
are limited in size. The background sample statistics &entanto account for each
sample in each bin of the final discriminant distribution.

— Non-QCD-multijet contamination removal
Reweighting functions are parameterized to remove non-QQ@idjet contamina-
tion discussed in Section 8.5. The systematic uncertamggsoriginally from the
measurement of thatio functions (Eq.8.15) and is estimated by uncertainties en th
reweighting functions (bin errors of the histograms). 8gsitic samples are gener-
ated by shifting the reweighting function up and down. leaft the normalization
and shape of the QCD-multijet sample.

— Monte Carlo tag rate functions and taggability
The uncertainty associated with thtagging tag-rate functions is evaluated by adding
the taggability and the tag rate components of the unceytenmguadrature. The TRF
uncertainties originate from several sources: statistinars of MC event sets; the
assumed fraction of heavy flavor in the multijets MC eventgHie mistag rate deter-
mination; and the parameterizations. For some channelhicha RF systematics
cannot be well determined, we assigned a flat uncertainty®wi4%.

— QCD-multijet tag rate function shape-changing
As mentioned in Section 8, an important part of the backgiauoedel is based on
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the TRF measurement. QCD-multijet TRF uncertainties are agtitnby the TRF
measurement. TRF fitting curves are shifted4hl o to generate new TRF-shifted
samples that later will be applied to the BDT outputs. Sinceiseethe QCD-multijet
normalization as a constraint, this systematic only asfsbiape.

— QCD-multijet normalization
An explicit QCD-multijet normalization has to be performesfdre making any cross
section calculation. Normalization factors are calcwdig the equation:

(# of datg — (# of bkg MC)
(# of multijets

(9.15)

Nmultijets =

where (# of Samplé (“Sample” is data, bkg MC or QCD-multijets) is the weighted
number of events in the BDT probability region 0.0 - 0.2. Thagistical uncertainty
of Nmurtijets IS used as a systematic uncertainty. The factors are shovwabie 8.2.

— WHjets to data
In the background modeling, a pbetagged QCD-multijet sample is not available to
do a normalization of the sum @+jets and QCD-multijet backgrounds to pretagged
data, so the weighted average normalization scale facta¥s+gets in electron/muon
channels are used. The difference of the scale factors batthe electron and muon
channels is assigned as the normalization uncertainty.

— Signal contamination removal
Signal contamination removal will be discussed in Secti®@¥® Uncertainty on this
is estimated by bin content errors of removal reweightingefions.

The relative values of the systematic uncertainties abozenat the only factors that
reflect how important they are in experimental sensitivitye contribution from each sys-
tematic effect to the expected cross section uncertaingstisnated by considering one
systematic source at a time. Among all the systematic umiogids, the five most im-
portant ones are: th&/+jets scale factors, the tau lepton reconstruction andiftation
efficiency, theW+jets heavy-flavor scale factor, the tag rate function, dsdintegrated
luminosity.
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Table 9.1: A summary of the relative systematic uncertainfor each of the correction
factors or normalizations. The uncertainty shown is therewsn the correction or the effi-
ciency, before it has been applied to the MC or data samples.

Relative Systematic Uncertainties

Components for Normalization

Integrated luminosity 6.1%
tt cross section 12.7%
Z+jets cross section 3.6%
Diboson cross sections 5.8%
Trigger efficiency 5.5%
Instantaneous luminosity reweighting 1.0%
Primary vertex modeling and selection 1.4%
Tau reconstruction and identification efficiency 11.0%
Tau energy scale (1.0-1.5)%
Jet fragmentation 5.0%
b-jet fragmentation 2.0%
ISR/FSR (0.6-8.0)%
Jet reconstruction and identification 1.0%
Jet energy scale and resolution (4.0-14.0)%
W+jets andZ+jets heavy-flavor fraction 13.7%
WH+jets to data (7.0-15.0)%
Multijet normalization (3.0-7.0)%
MC statistics (0.5-16)%

Components for Shape
Non-multijet contamination removal —
Alpgen Reweighting oflV+jets sample —
Tag-rate functions —
Signal Contamination Removal —
(not shape foZ+jets,W/¢p or dibosons)
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9.3 BDT Analysis and Sample Preparation

9.3.1 BDT Parameter Selection

The BDT algorithm used in the analysis has been discussedciin8e. In signal dis-
crimination, the number of boosting cycles (number of bddtees) is fixed to 50, the Ada
boost parameter is set to 0.20, the minimal leaf size isdichib 100 and the criterion for
impurity measure is the Gini index.

9.3.2 Discriminating Variables

44-80 variables are selected fronl50 topological variables to train decision trees. The
selection criteria are (1) the variable has to be well matiela the analysis, the selected
discriminant variables have KS test values larger than étd/éen data and the background
model. (2) most of the tau properties are excluded since déineyused for the new ID
optimization.

As mentioned before, analysis samples are split into @iffeanalysis channels accord-
ing to data reconstruction version (Run lla and Run IIb), taetfl+2 and 3), number of
tags (1 tag and 2 tags) and jet multiplicity (2 and 3 jets)stthere are 16 channels in total.
Table 9.2 shows a summary list collecting the variables appg in each channel. How-
ever, not all variables listed in Table 9.2 are included sBDT training of every channel.
Thus different channels have different training varialdtsi(each list has 50—-80 variables).
Tables G.1 to G.16 show the tables listing the top 20 varsaldaked in discriminating
power and their KS values in each channel. The comparisda pfahese top topological
variables between data and background are shown in Sectod 8ppendix D. Then all
the variables are classified in four categories:

Object kinematics and properties
Variables describing object kinematics are transverse embum (7) and pseudo-
rapidity (n) of individual objects (jet, tau arifr) per event. Jet objects are sorted de-
creasingly in jetor. In variable names, the highegt-jet is called “jetl”, the second
highestpr jet is called “jet2”etc. The leadingo-tagged jet is called “btaggedjetl”.
When a jet in an event is combined with a reconstrubtebdoson? and results in an

2A W boson on the transverse plane is reconstructed by a visiblertd . By constraining the transverse
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invariant mass closest to 170 GeV, such a jet is called thigdtesf the event and the
reconstructed top is called the best top. Only the two lepgts inpr in the event
are considered. The light quark jet in this case is whichet¢he two leading jets
was not chosen as the best jet. Some tau properties: isglatiofile, RMS, EMF
(definitions of the tau properties can be found in Section, A2d tau identification
BDT output are also included in this clagd(t) x n is a product of tau charge and
taun taking advantage of CP symmetry in thehannel production.

Event kinematics
These variables are calculated from all objects or a suldsebjects in an event.
Aplanarity defines how the reconstruct®d boson and all the jets in the event are
placed with respect to a plane. If the aplanarity is zermdidates that the system
of W and all jets spans only one plane. The single top quark seyealts tend to be
more aplanar than background events [&}hericity defines how spherically th&
and jets are situated in the event. The objects in signakevend to be spherical and
the events have a higher Sphericity value [88]objectg andM+ (objectg represent
the mass and transverse mass [5] of a subset of objd¢tdhjects) andHy (objects)
are defined as:

H (objecty = z E (9.16)
objects

Hr (objecty = Z pT. (9.17)
objects

For exampleHr (alljets-bestjet) meartdt of all jets excluding the best jeCentral-

ity is defined asir (alljets)/H (alljets). /Sis the invariant mass of all basic objects
(tau,Br and jets) in the eventy piK ..., andy pi¥ are transverse momentum of
vectorial sum of all tracks with and without a cut on DistaéeClosest Approach
(DCA) to the primary vertex in one event. The cut requirg;s;% <3.

Top quark reconstruction
The four-vectors of the reconstructéd boson using the neutrinpz constraint and
one of the jets in the event are added to reconstruct a tojxguie leadindg-tagged

mass of the system to th¢ mass, two neutrin@z solutions can be calculated and the one with the smaller
absolute value is used.
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jet and the best jet defined above correspond to 2 differgngt@arks, hence 2 top
quark mass variables (W, tagl andM (W, best]) respectively.

Angular correlation
Angular correlation variables are eith&R or A@ (and cosine ofA@) between different
objects in the different reference frames [84,85]. Framekide CM frame and best-
top frame, which are labelled by the subscripts in Table 9.2.

9.3.3 Sample Preparation for BDT Training

A conventional approach is used to split the final analysises into three equal-size
subsamples: one third used for training the BDT, one thirddsting and estimating the
trained BDT performance, one third for measurement of thescsection.

9.3.4 Signal Contamination Removal (SCR)

Since theb-tagging efficiency of single top events is not 100%, theessame signal events
left in the Ob-tagged data sample from which the multijets sample is ddrihese should
be removed to avoid underestimating the final cross sectime way is just like the re-
moval of non-QCD-multijet background MC sources discussefidction 8, i.e., to apply
data TRF on the single top MC sample to get a data-TRFed singleatmple and subtract
the latter from the multijet sample. However, this approaatiot realistic for two reasons:

— the amount of contamination in the multijet sample is unkmeince the cross section
of single top production is unknown.

— the contamination is too small to be reflected in a non-QCtj@iureweighting
function.
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Table 9.2: All discrimination variables used in the BDT arsaly in 4 categories: object
kinematics, event kinematics, top quark reconstructiahargular variables.

Object kinematics
pr(bestl)

n detecton' etl)

n detectoU et2)

n(et3)

pr(jetd)
pr(untaggedijet?2)
pr(1)

RMS(1)
Er

Event kinematics
Aplanarity{V,alljets)
NG

Hr (alljets-bestjet)
Ht(jetl+jet2)

H (alljets-bestjet)
M(alljets-btaggediet)
M(jetl+jet24V)

Mt (W)

pr (alljets-btaggedjet)
Mr(jetl,jet2)

Top quark reconstruction

pq_otbes(jetl)
n(etl)

n(et2)

pr(jet3)

pr (btaggedijetl)
I,]detectoh-)
BDT(7)

Prof(t)

Zprimary vertex

Centrality(alljets)
Hr (alljets++y)
Hr (alljets)

Hr (T+E7)

H (alljets)

M (alljets-bestjet)
M(jetl+jet2)

> ptTrkDCAcut

pr (alljets-bestjet)

M(W,tagl) (‘b-tagged" top mass)

Angular correlations
cosp(tagl,alljetsijets
cosp(bestT)pesttop

cosp(jetl,alljets)yjets
cogpjet2,alljets)ijets

cosp(taglT)btaggedtop
cosp(bestlt)ap

cosp(jetl T)otaggedtop
cosp(jet21)btaggedtop

COSYTptaggedtopPtaggedtopmrrame COSNThesttopLESIORMFrame

cosp(notbest,alljets)jjets
cosp(untaggedjet)btaggedtop

AR(T,jet2)
Ag(jetl,jet2)
Ag(t,jetl)

cosp(notbestr)pesttop
AR(jetl,jet2)
AR™MN(t jets)
Ag(jetlkr)
Ag(T,jet2)

p?_otbestj et2)
pr(jetl)

pr(jet2)

n(et4)
pr(untaggedjetl)
n(v)

Iso(t)

EMF(1)

Q(t)xn

Sphericity(,alljets)
Hr (alljets-btaggedjet)
Ht (jet1+jet2*t+ET)

H (alljets-btaggediet)
H(jetl+jet2)
M(alljets)

pr(W)

> Pt

pr(jetl+jet2)

M(W,bestl) ("best" top mass)

cosp(tagli)ian
cosp(bestl,notbeststop
cogp(jetln)ian

cogp(jet2,0)an

cogp(t,Qx 2
cosp(untaggedijetl,alljetgets
AR(t,jetl)

AR™M(alljets)

Ag(jet2iT)

AQ(tFr)
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So another approach is employed. The equation below is aesipn of the relationship
between these samples:

(Datg — (Bkg)— (ST Contarh-+(ST) 9.18)
— (Bkg) + (ST) — (ST Contam 9.19)
— (Bkg) + ST (s (9.20)
_ (Bkg) +R(Y)-(ST) (9.21)

where (Data) is the b-tagged sample(Bkg) is the background sample in Eqg. 8.13 intro-
duced in the section §ST) and (ST Contam are theb-tagged single top quark sample
and its contamination in the background samjst&y) = <S17_<<SSTUC°“ta">' is a weighting
function used to estimate the relative correction in terfres BDT variabley. The TRFed
0-b-tagged signal MC sample is used to estim&@®e& Contam. Figure 9.3 shows an exam-
ple in the most sensitive channel (Run libtype 1+2, 1 tag and 2 jets) of the derivation
of the signal contamination removal (SCR) correction. Bin eaterrors of the weighting
functions are treated as one of the systematic uncertgjriadied a “SCR” uncertainty.lts

relative uncertainty on the final cross section-it%.

[ BDT Probability Distribution |
o 2 _*_ 2 : :
5 = TRFed MC LA O TS VOSTTOOON TOIN SO
g18 : :
16 - Tagged MC A -k 0.88 T SN
1.4 : ) Jod
L * 087 : 5 : 5 :
' N 0.86F }-{- i3 : 0 IS
! + NS H’ ++
0.85 990
0.8 -A : : +
» : : : : + :
0.6 . T O ] B R RAT
0.4 AA_A_A_.A. _ R e
0.2 AA-A g : : : : :
A-A-A- B [ PR
oy Ay oA A o 0.82 : : : : :
of 5«7 P e s it il S R R PRI ST NI SR T S S [ R
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Figure 9.3: Left: BDT output distributions of the samp&T) (labelled as Tagged MC) and
the sampledST Contam (labelled as TRFed MC) fa-channel of single top. Right: Illus-
tration of signal contamination removal (SCR) correctiorshows the weighting function

R(y) = <SD_<<SSTDC°”ta"7 in terms of BDT output.
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9.4 Cross Check by Measurement aft Cross Section

9.4.1 Motivation

As seen in all the background agreement plots, the backdrowdel is dominated by
QCD-multijet events. It is useful to perform a “benchmark”aserement which is inde-
pendent of single top quarks but shares the same non-QCDjetuitackgrounds. In order
to validate such a background model, a cross check is madeshguring thét cross sec-
tion. Thett sample is one of the components in the background modek Walekground is
properly modeled, then the measutedross section should be consistent with theoretical
expectations within uncertainties. In this cross-chedk;@edicted single top samples are
treated as one of our background components whilétteample is treated as signal. The
following points make the cross check practical:

— The single top cross section predicted bythe SM is smajierfactor of~2 than that
of tt

— Thett cross section is well known.

— tt samples have different BDT outputs from single top samplass their signal
regions are located in different places, which means theasihgle top quark cross
section is not so important for this check.

9.4.2 Results of Cross Check

All training/testing/measurement samples in ttiigross check are the same as the ones
used in the single top cross section measurement which leg@srbentioned above. Since
the tt cross section is measured in the check, BDT are trainett samples as signal
and other MC sources plus the QCD-multijet sample as backgrasing the same BDT
training parameters and variable lists shown in Table 9.8e QCD-multijet sample is
normalized using the approach discussed in Section 8.6.n Tihese BDT are applied
to estimate BDT probability values of measurement samplesatevy event. The same
statistical software as is used for the single top quarkyaimis used to calculate the
cross section in different channels and different commnatof these channels. The all-
16-channel-combined value, 0033 pb, is consistent with the results in most channels.
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More importantly, it is also consistent with thieStandard-Model theoretical cross section,
7917981 pb®, and a recent DO experimental result, 8:38 pb [86], within 1.50. The
consistency provides strong support for the backgroundeinod

Table 9.3: Observet cross section measurements with all systematic unceadsitatken
into account, for many combinations of analysis channels.

Observed Cross Section Measurements

1,2tags+2,3jets taul2,3+2,3jets taul2,3+1,2tags all
Taul2 Tau3 | 1tag 2tags | 2jets 3 jets | channels
Runlla 7927 125731190732 89735 | 67738 9822 | 8873°

Runllb 102735 131743 | 9655 1647]2 | 99738 115738 | 112731
21 34 22 32 3.0 23 23
Runlla+b 90721 1287331912 12213286732 109723 | 100723

9.5 Expected Results

In this section results of the expected cross section aiounls and corresponding sensi-
tivity estimates are presented. The expectation calcudtere means given the Standard-
Model cross section of 3.46 pb [18], what cross section oflsiriop is expected to be
measured and what is the expected uncertainty. The inpthe ®ayesian software are the
decision tree discriminating histograms from Figs. H.18-id. Appendix H. However, real
data have to be replaced with background plus the StandadkeMmount of single top in
order to perform such an expectation calculation. TablesBaWs the expected upper lim-
its at 95% confidence level (CL). Table 9.5 shows the expectexbsection measurements
with all systematic uncertainties taken into account. Mafsthe expected cross section
values are consistent with the Standard Model. Howevergs@tues present a large devi-
ation but with a very large systematic uncertainty. The ntloeschannels are combined, the
smaller the uncertainty is on the measurement. Table 9Wsstite ratio of the posterior
peak position over the lower half-width. In addition, the Bayactor significance and the
Bayes ratio significance are shown in Tables 9.7 and 9.8. Tiesguantities give con-
sistent results on estimates of the expected experimesnaitvity with results obtained

3The calculation is a next-to-next-to-leading-order chtian for a top quark mass of 170 GeV [62].
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frompseudo-experiment datasets. Figure 9.4 shows thenpstensity distribution for
the expected cross section measurement for all 16 charorelsiced.

Table 9.4: Expected 95% C.L. upper limit values in pb with gdtematic uncertainties
taken into account, for many combinations of analysis chEnn

Expected 95% C.L. Upper Limits

1,2tags+2,3jets taul2,3+2,3jets taul2,3+1,2tags all

Taul2z Tau3|ltag 2tags|2jets 3jets | channels
Run lla 146 276 | 1565 231 15.0 250 14.7
Run b 92 197 | 9.2 192 9.3 180 9.0
Runllatb 86 194 | 87 161 8.8 17.1 8.5

Table 9.5: Expected cross section measurements with &diregsic uncertainties taken into
account, for many combinations of analysis channels.

Expected Cross Section Measurements

1,2tags+2,3jets taul2,3+2,3jets  taul2,3+1,2tags all

Taul2 Tau3d | ltag 2tags| 2jets 3 jets | channels

Runlla  37'3% 657..°|38"3% 3552|3832 387302 39733
2.7 6.5 2.7 5.7 2.7 54 2.6

Runilb 3631 35'$3 | 3621 365 |36'55 39733 | 3728
Runlla+b 3623 3.975% | 36755 3.673° (365> 39735 | 377351

Table 9.6: Expected posterior peak over half-width withsgitematic uncertainties taken
into account, for many combinations of analysis channels.

Expected Posterior Peak Over Half-Width

1,2tags+2,3jets taul2,3+2,3jets taul2,3+1,2tags all

Taul2 Tau3|ltag 2tags|2jets 3jets | channels
Run lla 10 10 1.0 10 1.0 10 11
Run llb 16 10 1.6 10 1.6 10 1.6
Runllatb 17 10 1.7 10 1.7 10 1.8
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Table 9.7: Expected Bayes factor significances with all syatee uncertainties taken into
account, for many combinations of analysis channels.

Expected Bayes Factor Significance
1,2tags+2,3jets taul2,3+2,3jets taul2,3+1,2tags all

Taul2 Tau3| ltag 2tags|2jets 3jets | channels
Run lla Q8 0.3 0.8 04 0.8 04 0.9
Run llib 16 05 1.6 0.7 16 0.7 1.7
Runlla+b 18 0.6 1.7 0.8 1.8 0.8 1.9

Table 9.8: Expected Bayes ratio significances with all syatenuncertainties taken into
account, for many combinations of analysis channels.

Expected Bayes Ratio Significance
1,2tags+2,3jets taul2,3+2,3jets taul2,3+1,2tags all
Taul2 Tau3| ltag 2tags|2jets 3jets | channels
Run lla Q8 0.3 0.8 04 0.8 04 0.9
Run llIb 16 05 1.6 0.7 16 0.7 1.7
Runlla+b 18 0.6 1.7 0.8 1.8 0.8 1.9
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Table 9.9: Expected upper limit, cross section, peak oviénwidth, Bayes factor signifi-
cance and Bayes ratio significance, with all systematic taiceies considered for the all
16 analysis channels.

Expected Results in Individual Channels
Channels Upperlimit o+Ac P/HW BFS BRS
Runlla/ttype 1+2/1tag/2jets| 161 383, 10 07 08
Runlla/ttype 1+2/1tag/3jets| 26.1 327321 10 02 02
Runlla/ttype 1+2/2tags/2jets 247 327342 10 03 03
Run lla/ttype 1+2 /2 tags/3jets  27.2 2973%1 10 02 02

Run lla /T type 3/ 1tag/ 2 jets 28.0 69755% 10 02 03
Run lla /1 type 3/ 1tag/ 3 jets 282 80750° 10 01 02
Run lla /1 type 3/ 2 tags / 2 jets 28.1 68,42 10 02 02
Run lla /T type 3/ 2 tags / 3 jets 28.2 387;8% 10 01 o1
Run Ilb /T type 1+2/ 1 tag / 2 jets 9.7 363% 15 15 15

Runllb/Ttype 1+2/1tag/3jets| 19.2 4058 10 06 07
Runllb /T type 1+2/2tags/2jets 205 34738 10 06 06
Runllb /T type 1+2/2tags/3jets  25.2 347384 10 04 04

U

Uy

Run lib /T type 3/ 1tag/ 2 jets 20.9 34774 10 05 05
Run llb /ttype 3/1tag/ 3 jets 27.4 317344 10 02 02
Run Ilb /T type 3/ 2 tags / 2 jets 27.3 34738 10 02 02

- —42
Run llb /T type 3/ 2 tags/ 3 jets 28.0 3233 1.0 01 01
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Figure 9.4: Posterior density distribution for the expdatmss section measurement for all
16 channels combined (Run lla—Run llb, tau type 1,2,3, 1-2 @&@sjets). All systematic
uncertainties are taken into account. The input theoletross section is 3.46 pb.

9.6 Observed Results

The observed cross section calculations and corresposdingicance estimates are pre-
sented in this section. The BDT probability distributiongdigor this measurement are
shown in Figs. H.1-H.8 in Appendix H. Figure 9.5 shows the parison plots with dif-
ferent regions summed over all 16 channels (the plots inrEi§b are only for illustration
purposes). The comparison plots between data and bacldjtook compatible. The his-
tograms in Figs. H.1-H.8, along those shifted by systenwtexrts, are used to calculate
the limit or the cross sections of single top production.
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Figure 9.5: BDT probability output distributions combinedrh all channels with different

regions. (a) the region is [0.0, 1.0] with a log scale, (b)rigon is [0.5, 1.0] with a linear
scale.

Table 9.10 shows the upper limit values at 95% CL and Table €hbfvs the observed
cross section measurements with all systematic uncadsitgtken into account in certain
combined channels. Table 9.12 shows the ratio of the postpgak position over the
lower half-width. In addition, the Bayes ratio significanseshown in Table 9.3 Fig. 9.6
shows the posterior density distribution with ledirea shaded for observed cross section

measurement for all 16 channels combined (Run lla—Run libtytae 1,2,3, 1-2 tags, 2-3
jets).

Table 9.10: Observed 95% C.L. upper limit values in pb withsgitematic uncertainties
taken into account, for many combinations of analysis chbnn

Observed 95% C.L. Upper Limits
1,2tags+2,3jets taul2,3+2,3jets taul2,3+1,2tags all
Taul2 Tau3| ltag 2tags| 2jets 3jets | channels
Run lla 127 286 | 1568 231 17.9 199 133
Run llb 114 7.1 9.2 195 9.5 117 8.1
Runlla+b 96 1.7 8.6 144 9.0 9.0 7.3

41t doesn’'t make sense to calculate the Bayes factor significéor a measurement in real data.
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Table 9.11: Observed cross section measurements withs#ragatic uncertainties taken
into account, for many combinations of analysis channels.

Observed Cross Section Measurements

1,2tags+2,3jets taul2,3+2,3jets taul2,3+1,2tags all

Taul2 Tau3 ltag 2tags| 2jets 3jets | channels

Runlla  24%3% 2477257 4335 3673861732 0053 | 33738
29 2.8 26 5.9 26 5.4 23

Runlla+b 49%27 0.073% | 3851 48732 | 442¢ 00739 | 34723

Table 9.12: Observed posterior peak over half-width witlsydtematic uncertainties taken
into account, for many combinations of analysis channels.

Observed Posterior Peak Over Half-Width

1,2tags+2,3jets taul2,3+2,3jets taul2,3+1,2tags all

Taul2 Tau3| ltag 2tags|2jets 3jets | channels
Run lla 10 11 1.1 10 1.3 0.0 1.0
Run llb 23 0.0 1.7 14 2.0 0.0 1.8
Runlla+b 23 0.0 1.8 13 2.1 0.0 1.9

Table 9.13: Observed Bayes ratio significances with all syate uncertainties taken into
account, for many combinations of analysis channels.

Observed Bayes Ratio Significance

1,2tags+2,3jets

Taul2z Tau3
Run lla a5 13
Run llIb 26 0.0
Runlla+b 26 0.0

taul2,3+2,3jets taul2,3+1,2tags all
ltag 2tags| 2jets 3jets | channels
0.9 04 1.3 0.0 0.8
1.7 14 2.1 0.0 19
1.9 12 2.3 0.0 19
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Table 9.14: Observed upper limit, cross section, peak oakwidth and Bayes ratio sig-
nificance, with all systematic uncertainties consideredife all 16 analysis channels.

Observed Results in Individual Channels

Channels Upperlimit o+Ac P/HW BRS
Run lla /Tt type 1+2/ 1 tag / 2 jets 18.7 57133 12 11
Runlla/ttype 1+2/1tag/3jets| 241 0033 00 00
Run lla/Ttype 1+2/2tags/2jets  26.3 62725 1.0 06
Run lla/ttype 1+2/2tags/3jets 258 00734° 00 00
Run lla/Ttype 3/1tag/ 2 jets 285 272,282 10 10
Run lla/ttype 3/ 1tag/ 3 jets 28.2 007,85 00 00
Run lla /T type 3/ 2 tags / 2 jets 285 2087,30%8 10 10
Run lla /T type 3/ 2 tags / 3 jets 283 2107,7%2° 10 04
Runllb/ttype 1+2/1tag/2jets| 133 6335 23 26
Runllb/ttype 1+2/1tag/3jets| 155 00t/ 00 00
Runllb /T type 1+2/2tags/2jets  25.2 96759 16 16
Runllb /T type 1+2/2tags/3jets  25.8 4853 1.0 05
Runllb/ttype 3/1tag/2 jets 8.2 00732 00 00
Run b/t type 3/1tag/ 3 jets 25.3 007332 00 00
Run llb /T type 3/ 2 tags / 2 jets 27.9 1077 43" 10 06
Run Ilb /T type 3/ 2 tags / 3 jets 285 2087,308 10 10

In this analysis, due to the low experimental sensitivitg & andt-channels are mea-
sured together. It would be interesting to determine theisg sections separately since the
two processes will be sensitive to different types of newsats; For this reason, limitsfor
treating them in two dimensions are also set. The two-dimeas$ (2D) limits are set by
the same Bayesian approach described in Section 9.1 but wé&hmwre signal channel.
The full description can be found in Ref. [81]. Fig. 9.7 shoesults of 2D limit setting:
(@) in the figure iss-, t-channel ands+t combined observed posterior density probabili-
ties while (b) presents the contour of posterior densitypphualities of thes channel versus
thet channel. In (b), the measured peak in black is consisteiht the Standard-Model
prediction.
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- 30 Area
E] 4 o Area

1 I 1 1 1 I 1
8 10 12 14
Signal Cross Section [pb]

Figure 9.6: Posterior density distribution for the obsdremss section measurement for all
16 channels combined (Run Illa—Run llb, tau type 1,2,3, 1-2 @&@sjets). All systematic
uncertainties are taken into account.
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Figure 9.7: Results of 2D limit setting. (&), t-channel and+t combined observed poste-
rior density probabilities; (b) Contour of posterior depgitobabilities ofs channel versus
t channel. The Standard Model prediction is withio band.
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9.7 Combination with ejutjets Channels

9.7.1 Combined Cross Section

As the sample in the tau+jets channel is orthogonal to thaeotron/muon+jets chan-
nels [13], it is possible to combine the results. A crossisaabf 3.94°388 pb is mea-
sured in the electron/muon+jets channels. In the comlinathe tau lepton and the elec-
tron/muon+jets channels are treated as two independentelsausing the same Bayesian
approach implemented to combine different tau analysismméla above. The combined
expected and observed posterior densities are calculatetha combined measured cross
section is

o(pp — tb+X,tqb+X) = 3.847982 pb (9.22)

with a ratio of the peak of the expected posterior densitystavidth 4.7 compared to 4.5 in
electron and muon combined.

9.7.2 |Vip| Measurement

As mentioned before, the coupliigp| betweerb andt quarks is sensitive to new physics
beyond the SM.

The Bayesian posterior density functions fd, f1|2 and|Vip|? are shown in Fig. 9.8.
The latter corresponding ttf = 1 in the former is obtained by restricting the prior to be in
the region [0,1].

By the peak of the posterior density function|df, f-|? shown in Fig. 9.8 (a)|Vip f1|?
is measured to be. 121327 from which a[Vip f1| value of 1067015 is extracted. Thus the
V-A coupling strengthVip f1| of 1.06 is measured above the SM expectation.

If the prior is restricted to the region [0,1] arigl = 1, V2| =1.00" 399 is measured and
henceVip| =1.00709. Finally, from the posterior density function Mp|? shown in (b) of
Fig. 9.8, a lower limit of 0.72 oiiV;|? at 95% confidence level is calculated corresponding

to a lower limit of\t, =0.85. For data in e/mu+jets channelg,| > 0.78 [13].
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Figure 9.8: Posterior probability density function for {#) f1|? and (b)|Vip|? with a prior
in the region [0,1].



Chapter 10
Summary

This thesis presents a detailed analysis of the measurevhém rare electroweak single
top quark production irpp collisions at,/s= 1.96 TeV at the Tevatron. The analysis uses
4.8 fb~! of data collected by the DO detector system during the Tema®un Il period. This
is the first effort to search for single top quark productiorihie tau+jets channel. In the
analysis, an optimization of tau lepton identification imdocted using boosted decision
trees and a new tau ID is designed and optimized for this aiarbue to the dominant
QCD-multijet background, a novel multijet tag rate backgrunodel, by means dif-jet
tagging rate functions and available MC sources, is cdyefidveloped to understand the
final analysis data. Th# cross section based on the final data sample is also measured
to cross check and guarantee the quality of the backgrounttimBoosted decision trees
are used to make a variable to discriminate single top ssginam backgrounds. By a
Bayesian statistical approach, an upper limit of 7.3 pb at 86#idence level is obtained.
The observed cross section of single top quark productiongasured to be.@ffg pb
with a 1.9 standard deviation significance. This is conststath the Standard-Model
prediction of 3.46 pb and also with the result in the eledtraron+jets channels withind
uncertainty.

Since the data sample selected in the tau+jets channehisgamal to that in the elec-
tron/muon+jets channels, a combination is performed bygémee Bayesian approach. The
combined observed cross section is measured as

o(pp — tb+X,tqb+X) = 3.847982 pb
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with an expected sensitivity of 4.7 compared to 4.5 in theted®/muon+jet channels alone.
Assuming ff = 1, a lower limit of [Vip| is also measured to be larger than 0.85 at 95%
confidence level. As a summary, Fig. 10.1 shows several receasurements of single top
quark production compared to the theoretical SM predi¢tBoa6+0.18 pb, calculated for

a top mass of 170 GeV [18].

DO e+p combination NS — 3.94 %0 pb
DO T in this analysis o 3.40 722 pb
DO e+p+1 combination LS — 3.84 0% pb
CDF combination  —@— 2.30 0% pb
Theoretical SM Prediction at Top Mass 170 GeV
T | DR

o 1 2 3 4 5 6
o(pp - tb+X, tgb+X)

Figure 10.1: Summary plot of several recent measuremesiagite top quark production.
The theoretical SM prediction [18] at a top mass of 170 GeVicduded as a shaded band.
The “D0O e+1 combination” result is taken from [13] while “CDF combinatioresults
come from [14].



Appendix A

Event Display

In this appendix, three single top quark candidate everitstau types 1, 2 and 3 are dis-
played in Figs. A.1, A.2 and A.3 respectively. These eveat®tlarge boosted decision tree
outputs indicating that they are likely to be single top ¢usggnal. Each event contains one
tau lepton candidatefr and two jets (one of which ib-tagged). Each event is displayed
in a calorimeten-@ space lego plot, a transverse view and longitudinal view.
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Run 227525 Evt 3202468 Thu Nov 9 15:35:25 2006

1 MET M em

jet (em/had)

Bins: 167

Mean: 0.633 0 3

Rms: 1.35 -4.7 MET et: 36.05

Min: 0.0236

Max: 10.1

(@)
Run 227525 Evt 3202468 Thu Nov 9 15:35:25 2006
ET scale: 20 GeV
Run 227525 Evt 3202468 Thu Nov 9 15:35:25 2006
‘ E scale: 23 GeV
. MET

b jet

b (@
Figure A.1: Event oiis?play of a signal candidate event wim;mt(l)tau and two jets one of
which isb-tagged. The output of the boosted decision tree to disndtrisignal for this
event is 0.974. (a) is a calorimeter ¢ space lego plot, (b) is A-Y transverse view and
(c) is a longitudinal side view. Reconstructed tracks arevshas black lines while tower
energy deposits in the EM and hadronic calorimeter are staswved and blue bars aig
as yellow bars. In the event, the type 1 tau appears as a ngrand later it is identified

as a hadronic tau by the tau ID.
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Run 232200 Evt 21803058 Sun Apr 15 03:52:53 2007

1 MET M em

2jet (em/had)

Bins: 193
Mean: 0.812 3

Rms: 3.42 0 T4z MET et: 86.38
Min: 0.00983

Max: 35.9

@)

Run 232200 Evt 21803058 Sun Apr 15 03:52:53 2007

ET scale: 48 GeV
b jet

Run 232200 Evt 21803058 Sun Apr 15 03:52:53 2007

E scale: 60 GeV

Jet

Tau

b C
Figure A.2: Event oiis?play of a signal candidate event wim;mt(Z)tau and two jets one of
which isb-tagged. The output of the boosted decision tree to disndtrisignal for this
event is 0.975. (a) is a calorimeter @ space lego plot, (b) is A-Y transverse view and
(c) is a longitudinal side view. Reconstructed tracks arevshas black lines while tower
energy deposits in the EM and hadronic calorimeter are stamved and blue bars aid
as yellow bars. In the event, this type 2 tau deposits moss efnergy in the EM section of
the calorimeter due to two photons fram decay.
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Run 234083 Evt 38760684 Tue Jul 3 19:25:42 2007

1 MET M em

115

Bins: 180
Mean: 0.868 -3

Rms: 2.72 0 T47 MET et: 86.59
Min: 0.0117

Max: 22.3

@)

Run 234083 Evt 38760684 Tue Jul 3 19:25:42 2007

ET scale: 60 GeV

Run 234083 Evt 38760684 Tue Jul 3 19:25:42 2007

E scale: 37 GeV

MET

Jet U

(b) (c)
Figure A.3: Event display of a signal candidate event witihyeet3 tau and two jets one of

which isb-tagged. The output of the boosted decision tree to disndtrisignal for this
event is 0.983. (a) is a calorimeter @ space lego plot, (b) is A-Y transverse view and
(c) is a longitudinal side view. Reconstructed tracks arevshas black lines while tower
energy deposits in the EM and hadronic calorimeter are stamved and blue bars aid
as yellow bars. In the event, the type 3 tau appears as a ngrawthe calorimeter with
which three tracks are associated.



Appendix B

b-tagged Sample and Its Data TRFed
Sample

In Chapter 8, it is mentioned that the QCD-multijet event samgplthe dominant back-
ground component; an approach by measuring data-TRF ifoheemployed to estimate

a rough background sample first. Plots below show compaigbsome variables (expla-
nations of the variables can be found in Table 9.2) in the essitive channel (Run Iib,
tau types 1 and 2, b-tag and 2 jets) between thetagged sample and its data-TRFed
predicted sample (i.e. an event-permuted sample). The @osan shows that between
the two samples are compatible within the Lincertainty band, which indicates that the
data-TRFed predicted sample can serve as a base backgronple $eom which physics
processes liket, W+jets, Z+jets, dibosons should be subtracted. The band is obtaiped b
shifting the data-TRF up and down byoland is used to evaluate the systematic shape on
the QCD-multijet TRF. For each row below, the left plot is inr@elar scale while the right
oneisin alog scale.
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Appendix C

Extra Tau Variables and Distributions

In Section 7.2, hadronic tau reconstruction at DO has bestudsed and definitions of
some tau variables are given. In this appendix, definitidis®me extra variables with high
power for real tau discrimination from background jets aikeiy. Distributions of those
variables are also shown below. The comparison samples ahle distributions are
based are:

— Single top ins- andt-channel MC samples (used as a BDT tau ID training/testing
signal sample)

— Tau trigger skimmed sample (used as a BDT tau ID trainintyfggbackground sam-
ple, the definition is presented in Section 7.4.2.)

— Z — 1t MC sample withZ mass 130-250 GeV (used as a NN tau ID training signal
sample)

— Z — 11t MC sample withZ mass 60-130 GeV (used as a NN tau ID testing signal
sample)

— Anti-isolationp-t pair (used as a NN tau ID training background sample)

The definitions of the samples used in the BDT tau ID are presantSection 7.4.2 while
those of the samples in NN tau ID are available in Sectior27.3.
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C.1 More Tau Variables

dalpha

V(@2 + @n)?
T
whereAgp andAn are differences between the vector sums of tau tracks antl of a
EM sub-clusters) is an azimuthal angle of the centroid of the vector sum of Ebt su
clusters

(C.1)

ele2 ,/E{™ - EEM whereE{" is the sum over all tau-associated tracks, EEM is Et of
the sum over EM sub-cluster(s). For a system of tau-assatctedcks and EM sub-
clusters, its mass mxele2<dalpha

prf3 a ratio ofEr of the highestppr EM sub-cluster oveEr deposited in the EM section
layer 3 of the calorimeter within a corfie< 0.5

profile2 If [Ngetectot >1.5, profile2 = profilex(0.67+0.2X [Ngetectof), €lSE profile2=profile
emET_o_ET aratio ofEr of EM sub-clusters over takdr

ettl o ETiso a ratio ofpt of the highespr tau track oveE}iso which is the talet within
aconeR< 0.7

rms2 rms2=rms/(1.0+0.29|nqge{) Wherenget is T detectom
ettr Er of tracks except the first two highest tracks
emcl_etl Et of the highesipt EM-cluster

emcl_et2 Et of the secondly highegtr EM-cluster

emcl_f12 Fraction of EM sub-cluster energy deposited in the EM saclayer 1 and
layer 2

emcl_f4 Fraction of EM sub-cluster energy deposited in the EM sadager 4

ettl Et of the highespr track
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is02 If |Ndetectot > 1.0, 1502 = iS0(1.5|Ngetectot — 0.5), otherwise iso2=iso
Et iso tauEr within a coneR < 0.7

chf Fraction of energy deposited in the coarse hadronic cadansection
icdf Fraction of energy deposited in the inter-cryostat detgd¢@D)

EM12_Et Etr of energy deposited in the EM section layer 1 and layer 2 withicone
R<0.5

EM3_Et Er of energy deposited in the EM section layer 3 within a cBre 0.5
EM4_Et Er of energy deposited in the EM section layer 4 within a cBre 0.5

EM12_ Et iso Ey of energy deposited in the EM section layer 1 and layer 2 wighcone
R<0.7

EM3_Et _iso Et of energy deposited in the EM section layer 3 within a cBre 0.7
EM4_Et iso Et of energy deposited in the EM section layer 4 within a cBre 0.7
EMA4f Fraction of tau energy deposited in the EM section layer fiwia coneR < 0.5
EMdisof Fraction of tau energy deposited in the EM section layer fiwih coneR < 0.7
tzDCA zof the highespr track at DCA

hot a ratio ofEy of the hottest cell over that of the secondly hottest cell
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C.2 Some Tau Variable Distributions

Tau._EM12isof (tau type 1)

L
0.8 T
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Tau._EM12isof (tau type 2)
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Single top in s—channel (MC)
Single top in t-channel (MC)
Tau trigger skimmed (data)
Z-. 1t m130-250 (MC)

Z .11 m60-130 (MC)
Anti-isolation p (data)

Figure C.1. Comparison between different samples used inDatudy for the variable
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Figure C.2: Comparison between different samples used inDiatudy for the variable

emET_o ET
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Tau._ET (tau type 1) Tau._ET (tau type 2)
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Figure C.3: Comparison between different samples for thalbasEr.
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Figure C.4: Comparison between different samples used inDiatudy for the variable
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Tau._ettl (tau type 1) Tau._ettl (tau type 2)
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Figure C.5: Comparison between different samples used inxatudy forleading track
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Figure C.6: Comparison between different samples used inDiatudy for the variable
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Figure C.7: Comparison between different samples used inOaiudy forEr of tracks
except the first 2 leading tracks
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Figure C.8: Comparison between different samples used inDaiudy for the variable
fhf.
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Tau._iso (tau type 1)
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Figure C.9: Comparison between different samples used inDatudy for the variable
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Figure C.10: Comparison between different samples used itDiatudy for the variable

profile.
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Tau._rms

Single top in s—channel (MC)
------- Single top in t-channel (MC)
s -+ Tau trigger skimmed (data)
Z-. 1t m130-250 (MC)
————— Z .11 m60-130 (MC)
—e—— Anti-isolation p (data)

Tau,_rms

Figure C.11: Comparison between different samples used itDtatudy for the variable
rms
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Figure C.12: Comparison between different samples used itDiatudy for the variable
trkiso.



Appendix D

Discriminant Variables

D.1 Comparison Plots in the Bin: Run lla, T type 1+2, 1
tag, 2 jets
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D.2 Comparison Plots in the Bin: Run lla, T type 1+2, 1
tag, 3 jets
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D.3 Comparison Plots in the Bin: Run lla, T type 1+2, 2
tags, 2 jets
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D.4 Comparison Plots in the Bin: Run lla, T type 1+2, 2
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D.5 Comparison Plots in the Bin: Run lla, T type 3, 1 tag,
2 jets
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D.6 Comparison Plots in the Bin: Run lla, T type 3, 1 tag,
3 jets
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D.7 Comparison Plots in the Bin: Run lla, T type 3, 2 tags,
2 jets
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D.8 Comparison Plots in the Bin: Run lla, T type 3, 2 tags,
3 jets
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D.9 Comparison Plots in the Bin: Run llb, T type 1+2, 1

Events

Events

Events

Events

D@ Run Il Preliminary

tag, 3 jets

KS=0.849 X?N=0.000 L =3769 pb™

D@ Run Il Preliminary

KS=0.310 X*/N=0.000

L=3769 pb™t

D@ Run Il Preliminary KS=0.383 x?/N=0.887 L = 3769 pb *

120

100

80

60

40

Run Il Preliminary

80 100 12(
M(W) [GeV]

KS=0.114 X¥/N=0.007 L =3769pb™

Events

D@ Run Il Preliminary

1y

80

100 120 140 160 180 200

KS=0.284 X*/N=0.024

t4

Track p sum [GeV]

L=3769 pb~

2 25 3
Ag(Jet2, MET) [Rad]
L =3769 ph™

D@ Run Il Preliminary KS=0.980 x%N=0.718

Run Il Preliminary

04 05 06 07 08 09

Sphericity_AllJetsW

KS=0.287 XN=0.000  L=3769 pb™

£
5 200]
L 180

160
140
120
100|
80|
60|
40
20|

05

D@ Run Il Preliminary

055 06 0.65

07 075 08 085 09 095

KS=0.634 X¥/N=0.243

TBDT output

L =3769 pb™

@

E 200]

o

T 180
160|
140|

-04 -02 8 1

0 02 04 06 O
Cos(Best Jet, Lepton)

best top
L=3769pb™

D@Run Il Preliminary  KS=0.997 X/N=0.821

=]
T T T T

S g

60 70 80
Lepton P . [GeV]

Run Il Preliminary KS=0.365 X*/N=0.663 L =3769 pb*-

D@

02 0 02 04 06 08
Cos(Best Jet, NotBestJet)

Run Il Preliminary

KS=0.609 Xx*N=0.094

1

best top

L=3769pb™

InvariantMass_JetlJet2W

D@ Run Il Preliminary  K$=0.414 XYN=0.272 L =3769 pb™

100

H

25 3

15 2
Ag(Lepton, Jetl) [Rad]

.
1)
5]

51

S

2 25 3
AgJet1, MET) [Rad]

g B

02 -0 02 04 06
Cos(Lepton ,Best Top
best top

-1 08 -06 -04 08

—

CM frame.



APPENDIX D. DISCRIMINANT VARIABLES 169
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D.10 Comparison Plots in the Bin: Run Ilb, T type 1+2, 2
tags, 2 jets
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D@ Run Il Preliminary ~ KS=0.998 X?N=0.890 L =3769pb™ D@ Run Il Preliminary  KS=0.680 X*/N=0.761 L =3769 pb™ D@ Run Il Preliminary KS=0.888 X/N=0.000 L =3769pb™*
) @ E
14—
i ir . o f
B 12
10F
8-
08 06 -04 -02 -0 02 04 06 08 1 02 -0 02 04 06 08 1 10 15 20 25 30
Cos(Best Jet, Lepton) Cos(Best Jet, NotBestlet) InvariantMass_AllJets_MinusBestJet
D@ Run Il Preliminary  KS=0.481 XN=0.000 L =3769pb™ D@ Run Il Preliminary  KS=0.210 ¥/N=0.000  L=3769pb™ D@Run Il Preliminary  KS=0.873 xYN=0.000 L =3769pb™
2 qaF L2 g 2 L
T 14 = =
8 r E 8 ol
[T ] [Tl
6
a
500 600 700 15 2 25 3 0.8 1
InvariantMass_JetlJet2W Ag(Lepton, Jetl) [Rad] Profile of leading T
Run Il Preliminary  KS=0.871 XYN=0.000 L =3769pb™ D@ Run Il Preliminary  KS=0.971 ¥N=0.000 L =3769pb™"
) @
g1 t 9
g ]
m o 8§
7
6
5
0.4 0. 120 140 160

RMS of leading T P(TJe(l,Je(Z)

[GeV]



APPENDIX D. DISCRIMINANT VARIABLES 172

D.11 Comparison Plots in the Bin: Run Ilb, T type 1+2, 2
tags, 3 jets
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D.12 Comparison Plots in the Bin: Run llb, 1 type 3, 1

tag, 2 jets
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D.13 Comparison Plots in the Bin: Run llb, 1 type 3, 1
tag, 3 jets
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D.14 Comparison Plots in the Bin: Run llb, T type 3, 2
tags, 2 jets
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D.15 Comparison Plots in the Bin: Run llb, T type 3, 2
tags, 3 jets
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Appendix E

Event Yields

Table E.1: Yields with uncertainty after selection for Rua tlata with 1b-tag jet. The
fraction of each background component is also listed ingrdrc

tau type 1+2 tau type 3

2 jets 3jets 2 jets 3jets
Signals
tb+tgb 7.2+1.3 3.2£0.6 1.4+0.3 0.#0.1
Backgrounds
W+2b 22.8:4.7 (6.9%)  16.6:2.6 (5.1%) 4810 (2.0%) 3.205  (1.5%)
W+2¢ 11.22.4 (3.6%) 9.815 (3.0%) 2305  (0.9%) 2803  (0.9%)
W-light jet 17.742.7 (5.4%)  10.30.7 (3.2%) 3.806  (1.5%) 2302  (1.0%)
Z+2b 2.5:0.6 (0.8%) 1.%20.4 (0.5%) 0.40.2 (0.4%) 0.50.1 (0.2%)
Z+2¢ 1.4t0.3 (0.4%) 0.90.2 (0.3%) 0.820.1  (0.2%) 0.60.1  (0.3%)
Z+light jet 4.4£0.9 (1.3%) 2.205 (0.7%) 1303  (0.5%) 0.60.1  (0.3%)
Dibosons 3.£0.5 (0.9%) 1.20.3 (0.5%) 0.80.1 (0.3%) 0.60.1 (0.3%)
tt 10.9+2.2 (3.3%)  23.94.7 (7.3%) 3.808  (1.6%) 9.619  (4.3%)
Multijets 254.4:11.8  (77.3%) 2595105 (79.4%) 22889.0 (92.6%) 203.17.6 (91.4%)
Background Sum  329.0+15.6 326.£12.2 247.19.0 222.37.6
Data 325 379 264 240
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Table E.2: Yields with uncertainty after selection for Ruadlata with Z-tagged jets. The
fraction of each background component is also listed ingrdrc

tau type 1+2 tau type 3

2 jets 3jets 2 jets 3jets
Signals
th+tgb 1.43+0.31 0.92:0.21 0.28:0.06 0.19:0.04
Backgrounds
W+2b 6.36t1.31  (33.7%) 3.880.60 (14.9%) 1.360.28 (10.1%) 0.66:0.10 (2.6%)
W+2¢ 0.48:0.10  (2.5%) 0.580.08  (1.9%) 0.180.02  (0.7%)  0.060.01  (0.2%)
W-light jet 0.08t0.01  (0.4%) 0.060.00 (0.2%)  0.020.00 (0.2%)  0.020.00  (0.1%)
Z+2b 0.56£0.14 (3.0%) 0.380.10 (1.5%) 0.280.05 (1.5%) 0.130.03 (0.4%)
Z+2¢c 0.06£0.02 (0.3%) 0.08:0.02 (0.3%) 0.02:0.00 (0.1%) 0.040.01 (0.2%)
Z+light jet 0.03t0.01  (0.2%)  0.020.00  (0.1%)  0.0£0.00  (0.1%)  0.080.00  (0.0%)
Dibosons 0.32:0.09 (2.1%) 0.120.04 (0.7%) 0.0%0.02 (0.5%) 0.050.01 (0.2%)
tt 3.80+£0.90 (20.1%) 8.331.94 (32.0%) 1.250.31 (9.3%) 3.040.72  (11.9%)
Multijets 711114 (37.7%) 12.581.76 (48.3%) 10.421.42 (77.5%) 21.532.51 (84.4%)
Background Sum  18.87A-2.11 26.0%2.68 13.441.43 25.5%2.43
Data 29 30 16 22

Table E.3: Yields with uncertainty after selection for Rub data with 1b-tag jet. The
fraction of each background component is also listed ingr@rc

tau type 1+2 tau type 3

2 jets 3jets 2 jets 3jets
Signals
th+tgb 29.2+5.4 13.4:2.6 5.11.0 2.3t0.5
Backgrounds
W+2b 102.6:20.4  (13.2%) 61.610.9 (8.6%) 17.835 (4.0%) 10.81.9 (2.8%)
W+2c 60.3:12.0 (7.8%) 38.86.8 (5.4%) 11.82.2 (2.5%) 7513 (2.0%)
W+light jet 119.8£16.9 (15.4%) 64.87.2 (9.2%) 23.83.2 (5.1%) 12.21.4 (3.2%)
Z+2b 6.3t1.5 (0.8%) 3.40.8 (0.5%) 2.&0.7 (0.6%) 1.804 (0.5%)
Z+2c 2.8+0.7 (0.4%) 2.90.7 (0.4%) 1.20.4 (0.4%) 1.20.3 (0.3%)
Z+light jet 6.9+1.4 (0.9%) 4810 (0.7%) 2.80.6 (0.6%) 1.40.3 (0.4%)
Dibosons 15.22.8 (2.0%) 7.51.4 (1.1%) 3.40.6 (0.8%) 1.20.3 (0.4%)
tt 34.747.5 (4.5%) 65.9-13.6 (9.3%) 11.525 (2.6%) 23.94.9 (6.3%)
Multijets 427.6:16.2  (55.1%) 4575159 (64.8%) 373%59.8 (83.5%) 319.385 (84.1%)
Background Sum  776.6£49.9 705.831.7 4474133 379.8:10.6

Data 810 702 463 415
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Table E.4: Yields with uncertainty after selection for Rumdiata with 2b-tagged jets. The
fraction of each background component is also listed ingrdrc

tau type 1+2 tau type 3

2 jets 3jets 2 jets 3jets
Signals
th+tgb 3.48+0.88 2.4%0.64 0.52:0.15 0.4@:0.11
Backgrounds
W+2b 13.7%2.75  (43.2%) 8.491.52 (18.7%) 2.050.41 (17.6%) 1.270.23 (5.0%)
W+2c 1.48:0.30 (4.6%) 1.250.22 (2.7%) 0.26:0.05 (2.3%) 0.280.05 (1.1%)
W+light jet 0.42+0.06 (1.3%) 0.340.04 (0.8%) 0.080.01 (0.7%) 0.0%£0.01 (0.3%)
Z+2b 0.770.23 (2.4%) 0.580.14 (1.1%) 0.220.06 (1.9%) 0.150.04 (0.6%)
Z+2¢c 0.07:0.02 (0.2%) 0.130.03 (0.3%) 0.030.01 (0.3%) 0.050.01 (0.2%)
Z+light jet 0.04+0.01 (0.1%) 0.040.01 (0.1%) 0.02:0.00 (0.1%) 0.0%0.00 (0.0%)
Dibosons 0.8%0.20 (2.7%) 0.430.10 (0.9%) 0.140.03 (1.2%) 0.18:0.02 (0.4%)
tt 7.24£2.01 (22.7%) 15.624.11 (34.5%) 2.020.56 (17.3%) 5.051.32 (19.6%)
Multijets 7271125 (22.8%) 18.522.03 (40.8%) 6.821.01 (58.6%) 18.721.95 (72.8%)
Background Sum  31.95+4.09 45.36:5.20 11.64-1.28 25.69-2.37

Data 47 50 19 34




Appendix F

Flat Systematic Uncertainty Tables

Table F.1: Flat systematic percentage errors for channel ([Rut type 1+2, 1 tag, 2 jets).

Flat systematic percentage errors for channel (Rurt ltgpe 1+2, 1 tag, 2 jets)

Multjets Wbb Wcc WIp Zbb Zcc Zlp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 3.0 0.6 0.6 0.6 0.6
Jet Energy Scale - - - - 4.0 4.0 10.0 - 4.0 4.0 4.0 4.0
Jet frag. - - - - 4.0 4.0 4.0 0.7 0.7 0.7 0.7 0.7
Jet ID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 110 110 110 11.0 11.0 11.0 11.0 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4
Multijet Normalization 3.9 - - - - - - - - - - -
H.F. (Wjets) - 13.7 137 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 13.7 - - - - - -
ScaleW+Jets to Data - 150 150 15.0 - - - - - - - -
Tag Rate Fun. - - - - 4.0 8.0 4.0 - 5.0 4.0 4.0 4.0
Tau energy scale - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trigger - - - - 5.5 5.5 5.5 5.5 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table F.2: Flat systematic percentage errors for channel (Rurt type 1+2, 1 tag, 3 jets).

Flat systematic percentage errors for channel (Rurt ltgpe 1+2, 1 tag, 3 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 2.8 5.2 5.2 5.2 5.2
Jet Energy Scale - — — - 4.0 4.0 10.0 — 4.0 4.0 4.0 4.0
Jet frag. - - - - 4.0 4.0 4.0 0.1 3.7 3.7 3.7 3.7
Jet ID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 110 110 11.0 11.0 11.0 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 14 14 14 14 14 14 14
Multijet Normalization 3.8 - - - - - - - - - - -
H.F. (Wjets) - 13.7 137 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 7.0 7.0 7.0 - - - - - - - -
Tag Rate Fun. - - - - 4.0 8.0 4.0 - 5.0 4.0 4.0 4.0
Tau energy scale - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trigger - - - - 55 55 55 55 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table F.3: Flat systematic percentage errors for channel (Rur type 1+2, 2 tags, 2 jets)

Flat systematic percentage errors for channel (Rur ligpe 1+2, 2 tags, 2 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tbh tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 3.0 0.6 0.6 0.6 0.6
Jet Energy Scale - - - - 6.0 6.0 10.0 - 6.0 4.0 4.0 4.0
Jet frag. - - - - 4.0 4.0 4.0 0.7 0.7 0.7 0.7 0.7
Jet ID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 110 110 11.0 11.0 11.0 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4
Multijet Normalization 14.5 - - - - - - - -
H.F. (Wjets) - 13.7 137 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 150 150 15.0 — - - - - — - -
Tag Rate Fun. - - - - 10.0 140 - - 14.0 12.0 120 12.0
Tau energy scale - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trigger - - - - 5.5 55 5.5 5.5 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 3.6 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table F.4: Flat systematic percentage errors for channel [Rurt type 1+2, 2 tags, 3 jets).

Flat systematic percentage errors for channel (Rurt lfgpe 1+2, 2 tags, 3 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 2.8 5.2 5.2 5.2 5.2
Jet Energy Scale - — — - 6.0 6.0 10.0 — 6.0 4.0 4.0 4.0
Jet frag. - - - - 4.0 4.0 4.0 0.1 3.7 3.7 3.7 3.7
Jet ID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 110 110 11.0 11.0 11.0 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 14 14 14 14 14 14 14
Multijet Normalization 13.2 - - - - - - - - - - -
H.F. (Wjets) - 13.7 137 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 7.0 7.0 7.0 - - - - - - - -
Tag Rate Fun. - - - - 10.0 14.0 - - 14.0 12.0 12.0 12.0
Tau energy scale - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trigger - - - - 55 55 55 5.5 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table F.5: Flat systematic percentage errors for channel (Ryrt type 3, 1 tag, 2 jets).

Flat systematic percentage errors for channel (Rurt ltgpe 3, 1 tag, 2 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tbh tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 3.0 0.6 0.6 0.6 0.6
Jet Energy Scale - - - - 6.0 6.0 10.0 4.0 6.0 4.0 4.0 4.0
Jet frag. - - - - 4.0 4.0 4.0 0.7 0.7 0.7 0.7 0.7
JetID - - - - 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4
Multijet Normalization 3.8 - - - - - - - - - - -
H.F. (Wjets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 150 150 15.0 — - - - - — - -
Tag Rate Fun. - - - - 4.0 8.0 10.0 - 5.0 4.0 4.0 4.0
Tau energy scale - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trigger - - - - 55 55 55 55 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table F.6: Flat systematic percentage errors for channel (Rut type 3, 1 tag, 3 jets).

Flat systematic percentage errors for channel (Rurt ltgpe 3, 1 tag, 3 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/FSR - - - - 8.0 8.0 8.0 2.8 5.2 5.2 5.2 5.2
Jet Energy Scale - — — - 6.0 6.0 10.0 4.0 6.0 4.0 4.0 4.0
Jet frag. - - - - 4.0 4.0 4.0 0.1 3.7 3.7 3.7 3.7
JetID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 14 14 14 14 14 14 14
Multijet Normalization 3.6 - - - - - - - - - - -
H.F. (Wijets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 7.0 7.0 7.0 - - - - - - - -
Tag Rate Fun. - - - - 4.0 8.0 10.0 - 5.0 4.0 4.0 4.0
Tau energy scale - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trigger - - - - 55 55 55 55 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table F.7: Flat systematic percentage errors for channel (Rurt type 3, 2 tags, 2 jets).

Flat systematic percentage errors for channel (Rurt lfgpe 3, 2 tags, 2 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tbh tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 3.0 0.6 0.6 0.6 0.6
Jet Energy Scale - - - - 6.0 6.0 10.0 4.0 6.0 4.0 4.0 4.0
Jet frag. - - - - 4.0 4.0 4.0 0.7 0.7 0.7 0.7 0.7
JetID - - - - 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4
Multijet Normalization 13.3 - - - - - - - - - - -
H.F. (Wjets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 150 150 15.0 — - - - - — - -
Tag Rate Fun. - - - - 120 140 15.0 - 14.0 12.0 120 12.0
Tau energy scale - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trigger - - - - 55 55 55 55 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table F.8: Flat systematic percentage errors for channel (Rurt type 3, 2 tags, 3 jets).

Flat systematic percentage errors for channel (Rurt itgpe 3, 2 tags, 3 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 2.8 5.2 5.2 5.2 5.2
Jet Energy Scale - — — - 6.0 6.0 10.0 4.0 6.0 4.0 4.0 4.0
Jet frag. - - - - 4.0 4.0 4.0 0.1 3.7 3.7 3.7 3.7
Jet ID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 110 110 11.0 11.0 11.0 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 14 14 14 14 14 14 14
Multijet Normalization 11.2 - - - - - - - - - - -
H.F. (Wjets) - 13.7 137 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 7.0 7.0 7.0 - - - - - - - -
Tag Rate Fun. - - - - 120 140 15.0 - 14.0 12.0 120 12.0
Tau energy scale - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Trigger - - - - 55 55 55 5.5 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table F.9: Flat systematic percentage errors for channel [Rut type 1+2, 1 tag, 2 jets).

Flat systematic percentage errors for channel (Rurtltipe 1+2, 1 tag, 2 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tbh tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 3.0 0.6 0.6 0.6 0.6
Jet Energy Scale - - - - 4.0 4.0 8.0 - 4.0 3.0 3.0 3.0
Jet frag. - - - - 4.0 4.0 4.0 0.7 0.7 0.7 0.7 0.7
JetID - - - - 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4
Multijet Normalization 2.9 - - - - - - - -
H.F. (Wjets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 140 140 140 - - - - - - - -
Tag Rate Fun. - - - - - - - - - 6.0 6.0 6.0
Tau energy scale - - - - 15 15 15 15 15 15 15 15
Trigger - - - - 55 55 55 55 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table F.10: Flat systematic percentage errors for chafal (Ib, T type 1+2, 1 tag, 3 jets).

Flat systematic percentage errors for channel (Rurtltippe 1+2, 1 tag, 3 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/FSR - - - - 8.0 8.0 8.0 2.8 5.2 5.2 5.2 5.2
Jet Energy Scale - — — - 4.0 4.0 8.0 — 4.0 3.0 3.0 3.0
Jet frag. - - - - 4.0 4.0 4.0 0.1 3.7 3.7 3.7 3.7
JetID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 14 14 14 14 14 14 14
Multijet Normalization 2.8 - - - - - - - - -
H.F. (Wijets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 11.0 110 110 - - - - - - - -
Tag Rate Fun. - - - - - - - - - 6.0 6.0 6.0
Tau energy scale - - - - 15 1.5 15 15 15 15 1.5 15
Trigger - - - - 55 55 55 55 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table F.11: Flat systematic percentage errors for chamtat (Ib, T type 1+2, 2 tags, 2

jets).

Flat systematic percentage errors for channel (Rurtltippe 1+2, 2 tags, 2 jets)

Multjets Wbb Wcc WIp Zbb Zcc Zlp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 3.0 0.6 0.6 0.6 0.6
Jet Energy Scale - - - - 6.0 6.0 8.0 - 6.0 3.0 3.0 3.0
Jet frag. - - - - 4.0 4.0 4.0 0.7 0.7 0.7 0.7 0.7
Jet ID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 110 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4
Multijet Normalization 13.4 - - - - - - - -
H.F. (Wijets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 140 140 140 - - - - - - - -
Tag Rate Fun. - — — - - - — - - 18.0 18.0 18.0
Tau energy scale - - — - 1.5 1.5 1.5 15 1.5 15 1.5 1.5
Trigger - - - - 55 55 55 55 55 55 55 55
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0




APPENDIX F. FLAT SYSTEMATIC UNCERTAINTY TABLES

191

Table F.12: Flat systematic percentage errors for chamtah (Ib, T type 1+2, 2 tags, 3

jets).

Flat systematic percentage errors for channel (Rurtitppe 1+2, 2 tags, 3 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIlp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 2.8 5.2 5.2 5.2 5.2
Jet Energy Scale — — — - 6.0 6.0 8.0 — 6.0 3.0 3.0 3.0
Jet frag. - - - - 4.0 4.0 4.0 0.1 3.7 3.7 3.7 3.7
Jet ID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 14 14 14 1.4 14 1.4 14
Multijet Normalization 10.2 - - - - - - - - - - -
H.F. (Wijets) - 13.7 137 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
Scalew+Jets to Data - 11.0 11.0 11.0 - — — - - - — —
Tag Rate Fun. — — — - - - — — - 18.0 18.0 18.0
Tau energy scale - — — - 15 1.5 15 15 1.5 15 1.5 15
Trigger - - - - 55 55 55 5.5 55 5.5 55 55
Xsect. - - - - 3.6 3.6 36 127 6.0 11.2 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table F.13: Flat systematic percentage errors for chafhed (Ib, T type 3, 1 tag, 2 jets).

Flat systematic percentage errors for channel (Rurtltippe 3, 1 tag, 2 jets)

Multjets Wbb Wcc WIp Zbb Zcc Zlp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 3.0 0.6 0.6 0.6 0.6
Jet Energy Scale - - - - 6.0 6.0 8.0 - 6.0 3.0 3.0 3.0
Jet frag. - - - - 4.0 4.0 4.0 0.7 0.7 0.7 0.7 0.7
Jet ID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 110 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 1.4 1.4 14 1.4 14 1.4 14
Multijet Normalization 25 - - - - - - - -
H.F. (Wijets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 140 140 140 - - - - - - - -
Tag Rate Fun. - — — - - - — - - - — 6.0
Tau energy scale - - — - 1.5 1.5 1.5 15 1.5 15 1.5 1.5
Trigger - - - - 55 55 55 55 55 55 55 55
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table F.14: Flat systematic percentage errors for chafhel (Ib, T type 3, 1 tag, 3 jets).

Flat systematic percentage errors for channel (Rurtlityppe 3, 1 tag, 3 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/FSR - - - - 8.0 8.0 8.0 2.8 5.2 5.2 5.2 5.2
Jet Energy Scale - — — - 6.0 6.0 8.0 — 6.0 3.0 3.0 3.0
Jet frag. - - - - 4.0 4.0 4.0 0.1 3.7 3.7 3.7 3.7
JetID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 14 14 14 14 14 14 14
Multijet Normalization 25 - - - - - - - - -
H.F. (Wijets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 11.0 110 110 - - - - - - - -
Tag Rate Fun. — — — - - - — — - - — 6.0
Tau energy scale - - - - 15 1.5 15 15 15 15 1.5 15
Trigger - - - - 55 55 55 5.5 55 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table F.15: Flat systematic percentage errors for chafet (Ib, T type 3, 2 tags, 2 jets).

Flat systematic percentage errors for channel (Rurtltippe 3, 2 tags, 2 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tbh tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/IFSR - - - - 8.0 8.0 8.0 3.0 0.6 0.6 0.6 0.6
Jet Energy Scale - - - - 6.0 6.0 8.0 - 6.0 3.0 3.0 3.0
Jet frag. - - - - 4.0 4.0 4.0 0.7 0.7 0.7 0.7 0.7
JetID - - - - 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 1.4 1.4 1.4 14 1.4 1.4 1.4 1.4
Multijet Normalization 135 - - - - - - - -
H.F. (Wjets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 140 140 140 - - - - - - - -
Tag Rate Fun. - - - - - - - - - - - 18.0
Tau energy scale - - - - 15 15 15 15 15 15 15 15
Trigger - - - - 55 55 55 55 5.5 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table F.16: Flat systematic percentage errors for chaihet (Ib, T type 3, 2 tags, 3 jets).

Flat systematic percentage errors for channel (Rurtltippe 3, 2 tags, 3 jets)

Multijets Wbb Wcc WIp Zbb Zcc ZIp tt dibosons tb tgb  tb+tgb
Branching frac. - - - - - - - 15 - 15 15 15
ISR/FSR - - - - 8.0 8.0 8.0 2.8 5.2 5.2 5.2 5.2
Jet Energy Scale - — — - 6.0 6.0 8.0 — 6.0 3.0 3.0 3.0
Jet frag. - - - - 4.0 4.0 4.0 0.1 3.7 3.7 3.7 3.7
JetID - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Jetres. - - - - 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Tau ID - - - - 11.0 110 11.0 110 11.0 11.0 110 11.0
Luminosity - - - - 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1
PDF - - - - - - - - - 3.0 3.0 3.0
Prim. vertex - - - - 14 14 14 14 14 14 14 14
Multijet Normalization 10.2 - - - - - - - - -
H.F. (Wijets) - 13.7 13.7 - - - - - - - - -
H.F. (Zjets) - - - - 13.7 137 - - - - - -
ScaleW+Jets to Data - 11.0 110 110 - - - - - - - -
Tag Rate Fun. — — — - - - — — - - — 18.0
Tau energy scale - - - - 15 1.5 15 15 15 15 1.5 15
Trigger - - - - 55 55 55 5.5 55 5.5 55 5.5
Xsect. - - - - 3.6 3.6 36 127 6.0 112 74 8.4
b-jet frag. - - - - 2.0 - - 2.0 - 2.0 2.0 2.0
Lumi. rewtg. - - - - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0




Appendix G
Ranked BDT Training Variables

Table G.1: Ranked discriminant variables used in the BDT &ealand their KS values in
thet type 1+2, 1 tag and 2 jets bin for Runlla data.

Ranking  Variable KS [ Ranking  Variable KS
1 pr(jetl+jet2) 0.35 11 pr (1) 0.25
2 3 pik 0.12 12 cosT,Q % 2 0.85
3 M+ (W) 0.29 13 cos(tag11)btaggedtop 0.78
4 BDT(1) 0.49 14 AR(t,jetl) 0.86
5 Hr (alljets) 0.12 15 Ag(jetl,jet2) 0.45
6 Sphericity{V,alljets) 0.37 16 M(alljets-btaggedjet) 0.56
7 cosp(best1T)pesttop 0.84 17 M(W,best1) ("best" top mass) 0.74
8 S p‘T'kDCAcu[ 0.58 18 M(W,tagl) ('b-tagged" top mass) 0.92
9 M (alljets-testjet) 0.50 19 photbestjet1) 0.15
10 cogp(notbestr)pesttop 0.70 20 cogp(jetl)ap 0.85

Table G.2: Ranked discriminant variables used in the BDT @ealand their KS values in
thet type 1+2, 1 tag and 3 jets bin for Runlla data.

Ranking  Variable KS [ Ranking  Variable KS
1 M+ (W) 0.36 11 cog(tagl1)btaggedtop 0.55
2 3 pik 0.65 12 cos(1,Q x 2) 0.56
3 Ag(jet2T) 0.45 13 AR(t,jet2) 0.99
4 AQ(TET) 0.46 14 Hr (jetl+jet2) 0.19
5 AR(T,jetl) 1.00 15 AR(jetl,jet2) 0.50
6 EMF() 0.21 16 pr(jet3) 0.85
7 pr(7) 0.19 17 Q(T)xn 0.54
8 cosp(bestl,notbest)sttop 0.81 18 Hr (alljets-bestjet) 0.16
9 Ag(jetlT) 0.64 19 BDT() 1.00
10 cogp(notbestr)pesttop 0.92 20 Zprimary vertex 0.96

194



APPENDIX G. RANKED BDT TRAINING VARIABLES

195

Table G.3: Ranked discriminant variables used in the BDT &ealand their KS values in
thet type 1+2, 2 tags and 2 jets bin for Runlla data.

Ranking  Variable KS [ Ranking  Variable KS
1 Hr (T+7) 0.16 11 H (alljets-btaggedjet) 0.12
2 pr (W) 0.20 12 AR(T,jetl) 0.76
3 cosp(tag1T)vtaggedtop 0.89 13 AQ(TET) 0.41
4 frk 0.89 14 3 P™pcacut 0.55
5 Mt (W) 0.42 15 n(et2) 0.44
6 Hr (alljets-btaggediet) 0.14 16 ndetectofjet) 0.81
7 pr(T) 0.62 17 Prof() 0.44
8 M(alljets-btaggedjet) 0.82 18 cogp(bestlt)pesttop 0.95
9 pr(jetl+jet2) 0.44 19 M(W,bestl) ("best" top mass) 0.99
10 BDT({) 0.33 20 Centrality(alljets) 0.67

Table G.4: Ranked discriminant variables used in the BDT a&ealand their KS values in
thet type 1+2, 2 tags and 3 jets bin for Runlla data.

Ranking  Variable KS [ Ranking  Variable KS
1 Hr (T46r) 0.92 11 Ag(jetibr) 0.96
2 Hr (alljets+t+T) 0.39 12 AR(t,jetl) 0.62
3 pr(jet3) 0.39 13 pr (1) 0.89
4 photestjet2) 0.81 14 Hr (alljets-btaggedjet) 0.27
5 Er 0.55 15 pr(untaggedjetl) 0.80
6 MT (W) 0.48 16 Hr (jetl+jet2w+r) 0.28
7 cosptagly)btaggedtop 0.25 17 Zprimary vertex 0.63
8 ik 0.96 18 AR(jetl jet2) 0.50
9 Centrality(alljets) 0.90 19 BDT([) 0.22
10 cogp(bestlT)pesttop 0.16 20 Q(T) xn 0.67

Table G.5: Ranked discriminant variables used in the BDT @ealand their KS values in

thet type 3, 1 tag and 2 jets bin for Runlla data.

Ranking  Variable KS [ Ranking  Variable KS
1 BDT() 0.87 11 cog(t1,Qx 2 1.00
2 plk 0.87 12 AR(1,jet2) 0.98
3 RMS(r) 0.75 13 pr (best1) 0.87
4 cosp(bestir)pestiop 0.97 14 M(alljets-testjet) 0.56
5 Hr (alljets) 0.38 15 EMF(@) 0.64
6 pr (1) 0.48 16 cogp(jetl )ptaggedtop 0.84
7 Ag(jet2ET) 0.28 17 cog(taglt)btaggedtop 0.48
8 Sphericity{V,alljets) 1.00 18 Prof() 0.98
9 cosp(jet2,)ptaggedtop 0.64 19 H (alljets) 0.55
10 Ag(jetlir) 0.16 20 Zprimary vertex 0.66
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Table G.6: Ranked discriminant variables used in the BDT &ealyand their KS values in
thet type 3, 1 tag and 3 jets bin for Runlla data.

Ranking  Variable KS [ Ranking  Variable KS
1 pr (W) 0.62 11 cosp(notbest)pestiop 0.26
2 Mt (W) 0.42 12 AR(1 jetl) 1.00
3 BDT(1) 0.27 13 pr (jet3) 0.13
4 cosp(bestir)pestiop 0.52 14 Sphericity(V,alljets) 0.19
5 Isoft) 0.27 15 Centrality(alljets) 0.16
6 pr (jetl+jet2) 0.13 16 M(alljets-btaggedjet) 0.97
7 M(W,bestl) ("best" top mass) 0.28 17 Ag(jet2ET) 0.60
8 Ag(jetlEr) 0.39 18 RMS() 0.22
9 cosp(jetl,alljetsyjets 0.99 19 pr(jet2) 0.19
10 pr (1) 0.61 20 3 pik 0.97

Table G.7: Ranked discriminant variables used in the BDT &ealand their KS values in
thet type 3, 2 tags and 2 jets bin for Runlla data.

Ranking  Variable KS [ Ranking  Variable KS
1 B 0.83 11 Mt (W) 0.23
2 Hr (tT47) 0.64 12 cog(tagl1)ptaggedtop 0.92
3 pr (W) 0.77 13 M(alljets-testjet) 0.16
4 Isoft) 0.77 14 cosp(1,Q x2) 0.86
5 3 pik 0.44 15 ndetectofjetq) 0.89
6 H(jetl+jet2) 0.18 16 ndetectoyy) 0.94
7 Zprimary vertex 1.00 17 cogp(bestlT)pestiop 0.62
8 AR(t,jet2) 0.27 18 EMF() 0.98
9 pr (jetl+jet2) 0.35 19 pr(jet2) 0.12
10 cospjet2,0)jap 0.32 20 pr(7) 0.86
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Table G.8: Ranked discriminant variables used in the BDT aealpnd their KS values in
thet type 3, 2 tags and 3 jets bin for Runlla data.

Ranking  Variable KS [ Ranking  Variable KS
1 Hr (T47) 0.95 11 cosp(1,Q x 2) 0.77
2 By 0.98 12 pr(jet3) 0.36
3 Mt (W) 0.28 13 pr(jetl) 0.93
4 cosp(best1T)pesttop 0.96 14 Ag(jetlT) 0.82
5 Hr (jetl+jet2++T) 0.96 15 Hr (alljets) 0.42
6 BDT(1) 1.00 16 pr (jetl+jet2) 0.75
7 cosp(notbest,alljetg)jjets 0.57 17 cog(tagly)btaggedtop 0.66
8 Ag(jet2Fr) 0.92 18 3 pik 0.67
9 Hr (alljets++7) 0.92 19 Centrality(alljets) 0.46
10 Isof) 0.72 20 M(alljets-btaggedjet) 0.53

Table G.9: Ranked discriminant variables used in the BDT &ealand their KS values in
thet type 1+2, 1 tag and 2 jets bin for Runllb data.

Ranking  Variable KS [ Ranking  Variable KS
1 MT (W) 0.64 11 pr (bestl) 0.47
2 Ag(jet2er) 0.69 12 Q(T) xn 0.20
3 pr (1) 0.11 13 Zprimary vertex 1.00
4 cosp(bestlr)pestiop 0.47 14 AR(t,jet2) 0.65
5 pr (jetl+jet2) 0.16 15 AR(T,jetl) 0.98
6 AQ(TET) 0.26 16 RMS() 0.92
7 cosp(tag11)vtaggedtop 0.50 17 cosp(t,Q x 2) 0.20
8 Ag(jetlkT) 0.47 18 pr(btaggedijetl) 0.21
9 > P pcacut 0.67 19 Prof() 0.55
10 M(W,bestl) ("best" top mass) 0.75 20 cogp(notbestr)pesttop 0.45

Table G.10: Ranked discriminant variables used in the BDTyaealand their KS values
in thet type 1+2, 1 tag and 3 jets bin for Runllb data.

Ranking  Variable KS [ Ranking  Variable KS
1 MT (W) 0.85 11 Ag(jetlEr) 0.61
2 3 pik 0.31 12 CO(TpesttopPESttORMErame 0.41
3 Ag(jet2er) 0.38 13 ARMIN(T jets) 0.72
4 Sphericity{V,alljets) 0.11 14 M(W,bestl) ("best" top mass) 0.32
5 BDT(1) 0.28 15 3 P ocacut 0.91
6 cosp(best1T)pesttop 0.98 16 Zprimary vertex 0.28
7 pr (1) 0.29 17 cog(notbest,alljets)jets 0.77
8 cosp(best1,notbessiop 0.63 18 cogyjet2,alljetShijets 0.78
9 M(jetl+jet2-4W) 1.00 19 Hr (jetl+jet2) 0.32
10 Ag(t,jetl) 0.37 20 cospietl btaggedtop 0.58
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Table G.11: Ranked discriminant variables used in the BDTyaealand their KS values
in thet type 1+2, 2 tags and 2 jets bin for Runllb data.

Ranking  Variable KS [ Ranking  Variable KS
1 Er 0.40 11 Centrality(alljets) 0.75
2 Hr (T+7) 0.97 12 EMF() 0.99
3 pr (1) 0.98 13 cosp(bestlr)iap 1.00
4 cosp(bestir)pestiop 0.64 14 cogp(best1,notbestysiop 0.68
5 Hr (alljets++7) 0.20 15 M(alljets-testjet) 0.89
6 cosp(jetl Nptaggedtop 0.38 16 M(jetl+jet24V) 0.48
7 MT (W) 0.73 17 Ag(t,jetl) 0.21
8 AQ(THT) 0.22 18 Prof() 0.87
9 BDT(1) 0.64 19 RMS() 0.87
10 Ag(jetl,jet2) 0.75 20 pr (jetl+jet2) 0.97

Table G.12: Ranked discriminant variables used in the BDTyasealand their KS values
in thet type 1+2, 2 tags and 3 jets bin for Runllb data.

Ranking  Variable KS [ Ranking  Variable KS
1 Hr (T45r) 0.80 11 Ag(jet2Er) 0.63
2 MT (W) 0.72 12 M(W,bestl) ("best" top mass) 0.81
3 Centrality(alljets) 0.74 13 Ag(jetlT) 0.94
4 cosp(bestiT)pestiop 0.73 14 pr (W) 0.85
5 pr (1) 0.63 15 M (jetl,jet2) 0.18
6 S p‘Trk 0.92 16 pr (alljets-bestjet) 0.29
7 cosptagly)btaggedtop 0.27 17 Zprimary vertex 0.67
8 BDT(1r) 0.74 18 Ag(t,jet2) 0.98
9 M(alljets-btaggedjet) 0.62 19 ARMN(alljets) 0.82
10 EMF() 0.67 20 cog(notbest,alljets)jets 0.89

Table G.13: Ranked discriminant variables used in the BDTyaealand their KS values
in thet type 3, 1 tag and 2 jets bin for Runllb data.

Ranking  Variable KS [ Ranking  Variable KS
1 Hr (t4r) 0.21 11 Zprimary vertex 0.23
2 Br 0.41 12 COSXThtaggediopbtaggedtopyrramg  0.95
3 Mt (W) 0.59 13 3 P pocacut 0.83
4 Isoft) 0.22 14 M(alljets-testjet) 0.12
5 cosp(bestir)pesttop 0.35 15 pr(jet2) 0.88
6 pr (1) 0.95 16 Ag(jet2Er) 0.26
7 BDT(1) 0.24 17 M(W,tagl) (‘b-tagged" top mass) 0.17
8 RMS(r) 0.76 18 AR(jetl jet2) 0.65
9 Hr (alljets-bestjet) 0.68 19 ndetectofjetq) 0.36
10 AR(1 jet2) 0.20 20 Hr (alljets+T7) 0.61
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Table G.14: Ranked discriminant variables used in the BDTyaealand their KS values
in thet type 3, 1 tag and 3 jets bin for Runllb data.

Ranking  Variable KS [ Ranking  Variable KS
1 MT (W) 0.89 11 Ag(jet2er) 0.56
2 Hr (alljets+1+7) 0.40 12 cogp(bestlT)pestiop 0.69
3 pr (W) 0.13 13 Zprimary vertex 0.66
4 BDT() 0.49 14 EMF() 0.46
5 RMS(r) 0.45 15 costagli)ptaggedtop 0.68
6 S p‘Trk 0.33 16 M(W,best1) ("best" top mass) 0.97
7 Hr (jetl+jet2+ 1) 0.53 17 DT jet2) 0.19
8 Q(1t) xn 1.00 18 Isof) 0.46
9 pr (1) 0.54 19 AR(1,jetl) 0.43
10 Agjetlr) 0.11 20 cospiet2 T)btaggedtop 1.00

Table G.15: Ranked discriminant variables used in the BDTyaealand their KS values
in thet type 3, 2 tags and 2 jets bin for Runllb data.

Ranking  Variable KS [ Ranking  Variable KS
1 Hr (T+7) 0.82 11 Sphericity(V,alljets) 0.52
2 Br 0.71 12 ndetectofjetq) 0.91
3 cosp(tag11)vtaggedtop 0.85 13 cogp(bestl,notbestysttop 0.84
4 3 pik 0.24 14 n(et2) 0.78
5 cosp(bestr)pesttop 0.72 15 M(W,tagl) (‘b-tagged" top mass) 0.22
6 M+ (W) 0.67 16 Centrality(alljets) 0.84
7 Isofr) 0.64 17 AR(1,jet2) 0.93
8 ndetectoyjet) 0.86 18 n(t) 0.46
9 Ag(jetlEr) 0.43 19 AQ(tHT) 0.88
10 pr (1) 0.97 20 RMS() 0.99

Table G.16: Ranked discriminant variables used in the BDTyaealand their KS values
in thet type 3, 2 tags and 3 jets bin for Runllb data.

Ranking  Variable KS [ Ranking  Variable KS
1 Hr (T+7) 0.66 11 nJdeeciofjet) 0.66
2 Mt (W) 0.50 12 AplanarityV,alljets) 0.48
3 pr (1) 0.96 13 M(W,best1) ("best" top mass) 0.95
4 BDT() 0.91 14 pr (W) 0.98
5 cosp(bestiT)pesttop 0.54 15 Ag(jetlT) 0.66
6 3 pik 0.93 16 RMS() 1.00
7 pr(jet3) 0.00 17 cog(notbest,alljets)jets 0.83
8 EMF() 0.27 18 AR(t,jet2) 0.64
9 cospuntaggedjet)ptaggedtop 0.98 19 cogpjet2 T)ptaggedtop 0.86
10 Zprimary vertex 1.00 20 ndetectoh) 1.00
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Comparison Plots of BDT Probability
Distributions
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Figure H.1: Decision tree probability distributions foetbhannels: b-tagged jety type
1 and 2 and total (a) 2 jets and (b) 3 jets for Run lla data
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Figure H.2: Decision tree probability distributions foetbhannels: B-tagged jetst type
1 and 2 and total (a) 2 jets and (b) 3 jets for Run lla data
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Figure H.3: Decision tree probability distributions foetbhannels: b-tagged jety type
3 and total (a) 2 jets and (b) 3 jets for Run lla data
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Figure H.4: Decision tree probability distributions foetbhannels: B-tagged jetst type
3 and total (a) 2 jets and (b) 3 jets for Run lla data
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Figure H.5: Decision tree probability distributions foetbhannels: b-tagged jety type
1 and 2 and total (a) 2 jets and (b) 3 jets for Run llb data
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Figure H.7: Decision tree probability distributions foetbhannels: b-tagged jety type
3 and total (a) 2 jets and (b) 3 jets for Run IIb data
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